
Speck
Dev Kit 
Datasheet
Nov 2022

TM



Make Intelligence Smarter

Contents
1. Introduction ................................................................................................................. 1

1.1 SpeckTM ...........................................................................................................1

1.2 SpeckTM Dev Kit .............................................................................................. 1

2. Features ......................................................................................................................2

2.1 SpeckTM SoC chip ........................................................................................... 2

2.1.1 Key features ..........................................................................................2

2.1.2 DVS layer ..............................................................................................2

2.1.3 DYNAP-CNN computing layers .............................................................2

2.1.4 Readout layer ........................................................................................3

2.2 Dev Kit .............................................................................................................3

3. Mechanical specification ............................................................................................. 4

4. SpeckTM specification ..................................................................................................9

4.1 Block diagram................................................................................................. 9

4.2 DYNAP-CNN convolutional computing layers .................................................9

4.2.1 Parallel computing layers ......................................................................9

4.3 Congestion balancer ....................................................................................... 9

4.4 Spike decimator ............................................................................................ 10

4.5 Memory capacity ........................................................................................... 11

4.6 Readout layer ................................................................................................12

4.6.1 Interrupt ...............................................................................................12

4.6.2 Readout pins .......................................................................................12

5. Getting started .......................................................................................................... 14

6. Readout pin monitoring .............................................................................................16

7. On board power monitor ........................................................................................... 18

8. Changelog .................................................................................................................19



SpeckTM Dev Kit Datasheet

www.synsense.ai 1

1. Introduction

1.1 SpeckTM
SpeckTM is a complete, multi-core, monolithic neuromorphic processor chip featuring an

integrated DVS sensor for real-time mobile and IoT vision applications. Speck provides

intelligent scene analysis at micro-power levels and real-time response. Speck

implements a fully configurable Spiking CNN architecture with up to 0.32 million

neurons.

SynSense is developing dedicated event-driven neuromorphic processors for real-time

vision processing. The ultra-low-power and ultra-low-latency capabilities of our proces-

sors pave the path for always-on IoT devices and edge-computing applications like

gesture recognition, face or object detection, tracking and surveillance. Our processors

are specifically designed for integration with most state-of-the art event-based image

sensors.

1.2 SpeckTM Dev Kit
SpeckTM Dev Kit is powered by the SynSense SpeckTM chip, which brings the flexibility

of convolutional dynamic vision processing to milliwatt energy budgets. It provides the

capabilities for real-time presence detection, real-time gesture recognition, and real-time

object classification.

Development of up to nine-layer spiking convolutional networks to process the output of

the internal dynamic-vision sensor is made easy with our open-source Python library

Sinabs and SynSense device toolchain Samna.

Figure 1: The SpeckTM Dev Kit

https://sinabs.ai/
https://synsense-sys-int.gitlab.io/samna/


Make Intelligence Smarter

www.synsense.ai2

2. Features
2.1 SpeckTM SoC chip

2.1.1 Key features

• Built-in 128*128 DVS

• 1x Event (or DVS) Pre-Processing layer (incl. noise filtering)

• 9x Convolutional layers (incl. pooling)

• 1x Readout layer operating in inactive/threshold/max spiking class/selected

class mode.

• Asynchronous serial interface

• Ultra-low average working power consumption

2.1.2 DVS layer

• 128*128 Pixel Array

• Sum pooling 1:1, 1:2, 1:4

• 1 bit configuration per pixel (1 kill)

• ROI selection

• Noise filter and hot pixel rejection

• On only / Off only / Both / Merge selection of DVS event polarity

• Mirroring in both X/Y

• Rotate in 90-degree steps

• Fanout of 2

2.1.3 DYNAP-CNN computing layers

• Max input dimension 128*128

• Max feature output size 64*64

• Max feature number 1024

• Weight resolution 8 bits

• Neuron state resolution 16 bits

• Max kernel size 16*16

• Stride {1,2,4,8} independent in X/Y



SpeckTM Dev Kit Datasheet

www.synsense.ai 3

• Padding [0..7] independent in X/Y

• Pooling 1:1, 1:2, 1:4

• Fanout of 2

• Leak operation on each layer

• Spike decimator on each layer

• Spike congestion balancer on each layer

• Parallel computing on layer 0 and layer 1, enabling larger throughput, can

be used as input layers

2.1.4 Readout layer

• 15 classes and 1 idle class

• Selectable moving average between 1, 6 and 32 time steps.

• 4 readout modes: inactive/threshold/max spiking class/specific class.

• 4 readout pins and 1 interrupt

2.2 Dev Kit
• 1x USB 3.0 Micro-B port

• On board power monitor over five power traces: VDD_IO, VDD_RAM,

VDD_LOGIC, VDD_PIXEL_DIGITAL, VDD_PIXEL_ANALOG of SpeckTM

SoC

• SpeckTM readout pin monitoring through Samna



Make Intelligence Smarter

www.synsense.ai4

3. Mechanical specification

Figure 2: Front view of the FPGA mother board (mm)



SpeckTM Dev Kit Datasheet

www.synsense.ai 5

Note:
1. System Power LED

2. FPGA CFG Done Indicator

3. USB 3.0 Controller State Indicator

4. SoC Power Traces State LEDs

5. Debug State Indicator

6. USB 3.0 Controller CFG Switch (RSV)

7. System Reset Key

8. USB 3.0 Micro-B Port

9. FPGA JTAG (RSV)

10. High Precision Power Monitor

11. Flash

12. USB 3.0 Controller

13. FPGA



Make Intelligence Smarter

www.synsense.ai6

Figure 3: Back view of the FPGA mother board (mm)



SpeckTM Dev Kit Datasheet

www.synsense.ai 7

Figure 4: Front view of the daughter board (mm)

Note:
1. SpeckTM SoC

2. Lens Holder Mounting Hole

3. External Power Supply (Optional, please remove the jumper for each power

trace before switching to external power supply)

4. EEPROM for board ID



Make Intelligence Smarter

www.synsense.ai8

Figure 5: Back view of the daughter board (mm)



SpeckTM Dev Kit Datasheet

www.synsense.ai 9

4. SpeckTM specification
4.1 Block diagram

Figure 6: SpeckTM block diagram

4.2 DYNAP-CNN convolutional computing layers
SpeckTM is equipped with 9 configurable spiking convolutional computing layers. The

layers can each implement a layer of a SCNN neural network, and can be connected to

form a user defined network of any size up to the maximum available resources. Layer

memory sizes are balanced to provide a flexible balance of resources, with larger or

smaller layers, in terms of kernel size or neuron number, as described in section 4.5.

4.2.1 Parallel computing layers

Layers 0 and 1, while having the same memory sizes as layer 3, provide enhanced

computing speed thanks to added parallelism in the convolution computation. These

layers can be typically used to increase throughput of the input layers for large SCNNs.

4.3 Congestion balancer
In SpeckTM, each convolutional layer is equipped with a congestion balancer block at its

data path input.

The congestion balancer enables dropping of input spikes at any time when the con-

volutional core of the layer is busy processing previous data. Specifically, if a train of

spikes are sent to the layer, a number of them will be accepted (via some buffering) and



Make Intelligence Smarter

www.synsense.ai10

the convolution computation starts. If, for example, the kernel is very large and a new

spike arrives while the layer input is busy, this new spike will be dropped. As soon as the

layer is again available, a coming spike will be processed.

This block is then able to adapt the spike input frequency to the convolution by capping

it to the maximum that the layer can process. When disabled, the block will let all spikes

through.

This feature is controlled by the input_congestion_balancer_enable.

4.4 Spike decimator
In SpeckTM, each convolutional layer is equipped with a decimator block at its data path

output. The decimator block enables the user to reduce the spike rate at the output of a

convolutional layer. When disabled, the block will let all spikes through.

This feature is controlled by the output_decimator_enable.

https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html#samna.speck2e.configuration.CnnLayerConfig.input_congestion_balancer_enable
https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html#samna.speck2e.configuration.CnnLayerConfig.output_decimator_enable


SpeckTM Dev Kit Datasheet

www.synsense.ai 11

4.5 Memory capacity
The SpeckTM is divided into 9 cores, each of which executes a single CNN layer. The

memory capacities of the cores are different, and restrict the implementation of larger

layers to specific cores.

Table 1: Memory capacity

Let a network be defined by the number of input features c, the number of output

features f , and the kernel dimensions kx , and ky .

The theoretical number of WORDs required for kernel memory KM is then

KM = cf kx ky

The total number of memory WORDs required is

KMT = c·2「 log2 (kxky)」 +「 log2 ( f)」

Core Kernel memory (WORD) Neuron memory (WORD)

0 16 Ki 64 Ki

1 16 Ki 64 Ki

2 16 Ki 64 Ki

3 32 Ki 32 Ki

4 32 Ki 32 Ki

5 64 Ki 16 Ki

6 64 Ki 16 Ki

7 16 Ki 16 Ki

8 16 Ki 16 Ki



Make Intelligence Smarter

www.synsense.ai12

The required number of neuron memory WORDs NM depends on the dimensions of the

input features cx , and cy , as well as the stride and padding sx ,sy , and px ,py .

fx =
�� − �� + 2��

��
+ 1

fy =
�� − �� + 2��

��
+ 1

NM = f fx fy

Again the total number of required WORDs on the chip side is larger.

NMT = f·2「 log2 ( fy)」 +「 log2 ( fx)」

4.6 Readout layer
The main use of the post-processing block is to calculate the moving average over a

time window for a maximum of 15 neurons, provide the maximum average of the 15

neurons and compare the value of the calculated moving averages against a specified

threshold. 5 pins of SpeckTM are dedicated to the direct readout of the class of maximum

activity, these pins (INTERRUPT and READOUT1 to 4) are designed to provide a direct

readout of the maximum spiking class (with or without activity threshold).

4.6.1 Interrupt

This pin outputs 0 until the class of max activity exceeds the threshold. Alternatively, the

threshold comparison can be overridden by setting override_threshold_max to True. In

this case, INTERRUPT becomes 1.

The INTERRUPT pin is updated whenever a readout clock pulse is issued. During the

readout clock pulse, INTERRUPT becomes 0. When the readout clock goes back to 0,

the INTERRUPT pin is raised again only if override_threshold_max is True or the max

class activity is again above the selected threshold.

4.6.2 Readout pins

There are 4 readout pins. READOUTx pins reflect the index of the class of max activity

as described in Data Output Modes. These pins are activated in two cases:

https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html#samna.speck2e.configuration.ReadoutConfig.threshold
https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html#samna.speck2e.configuration.ReadoutConfig.override_threshold_max
https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html#samna.speck2e.configuration.ReadoutConfig.override_threshold_max


SpeckTM Dev Kit Datasheet

www.synsense.ai 13

• A class has spiked more than the set threshold during the previous readout

clock period (INTERRUPT is also raised when this condition is met).

• The override_threshold_max is set to True (override threshold).

The 4 bits reflect the binary value of the most recent spiking class. As such, in an

application requiring only 4 classes, the CNN can be configured such that the four

output classes are encoded as class 1, 2, 4 and 8 when arriving at the readout layer. In

this condition, the 4 output pins READOUTx will each directly reflect one of the classes

of interest, and no decoder will be needed to interpret the chip output.

https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html#samna.speck2e.configuration.ReadoutConfig.override_threshold_max


Make Intelligence Smarter

www.synsense.ai14

5. Getting started
SynSense provides Tonic, Sinabs and Samna to help development on the SpeckTMDev

Kit.

Tonic provides publicly available event-based vision and audio datasets and event

transformations. The package is fully compatible with PyTorch Vision/Audio to give you

the flexibility that you need. It caters to both the event-based world that works directly

with events or time surfaces as well as to more conventional frameworks which might

convert events into dense representations in one way or another.

Sinabs is a Python library for development and implementation of Spiking Convolutional

Neural Networks (SCNNs). The library implements several layers that are spiking

equivalents of CNN layers. In addition it provides support to import CNN models

implemented in torch conveniently to test their spiking equivalent implementation.

Samna is the developer interface to the SynSense toolchain and run-time environment

for interacting with our devices. Written in C++, it provides a Python API and data

visualization tools for working with spiking neural networks and for processing streams

of event-based data.

An SNN model developed in Sinabs can be easily deployed onto the SpeckTM Dev Kit

with the help of Samna.

It is possible to connect an external DVS camera to the board, more info can be found at

Send events from a DVS to a dev kit using a graph.

Figure 7: Assembly instruction

https://tonic.readthedocs.io/en/latest/index.html
https://sinabs.ai/
https://synsense-sys-int.gitlab.io/samna/
https://synsense-sys-int.gitlab.io/samna/howto.html


SpeckTM Dev Kit Datasheet

www.synsense.ai 15

Figure 8: Development flow



Make Intelligence Smarter

www.synsense.ai16

6. Readout pin monitoring
The readout layer in SpeckTM is the post-processing layer, the output results are

readable through the 4 readout pins if an interrupt happens if configured correctly.

Using the readout pin monitoring feature provided by the dev kit, it is possible to validate

your model close to real application scenarios.

The readout pin monitoring feature can be enabled via Samna. To enable the readout

layer, the samna.speck2e.configuration.ReadoutConfig.enable needs to be set to True

first. An external slow clk must be provided on SLOW_CLK pin if samna.speck2e.con-

figuration.ReadoutConfig.internal_slow_clk is False. If you want to use counter based

post-processing, please set that to True, then there will be a post-processing every

128K DVS events from the internal DVS. To forward your model’s last layer to the

readout layer, you need to set its destination to 12.

The samna.speck2e.configuration.ReadoutConfig.readout_configuration_sel needs to

be set according to your model. There are 4 different addressing modes that could be

selected:

Value Mode
0 2x*2y*4f
1 2x*4y*2f
2 4x*4y*1f
3 1x*1y*16f

And set the samna.speck2e.configuration.ReadoutConfig.threshold of the readout layer

according to your model. The moving average of the output neurons is compared to the

threshold value to produce an output if the received number of spikes is greater than the

threshold.

The SpeckTM readout layer also provides a low pass filter. There are two selectable

time windows, 16 (16 * slow clk period) and 32 (32 * slow clk period), which can be

chosen by samna.speck2e.configuration.ReadoutConfig.low_pass_filter32_not16. The

default value is False, which is 16 * slow clk period. The low pass filter is enabled by

default, if you don’t want to use it, please set samna.speck2e.configuration.Readout-

https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html#samna.speck2e.configuration.ReadoutConfig.enable
https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html#samna.speck2e.configuration.ReadoutConfig.internal_slow_clk
https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html#samna.speck2e.configuration.ReadoutConfig.internal_slow_clk
https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html#samna.speck2e.configuration.ReadoutConfig.readout_configuration_sel
https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html#samna.speck2e.configuration.ReadoutConfig.threshold
https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html#samna.speck2e.configuration.ReadoutConfig.low_pass_filter32_not16
https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html#samna.speck2e.configuration.ReadoutConfig.low_pass_filter_disable


SpeckTM Dev Kit Datasheet

www.synsense.ai 17

Config.low_pass_filter_disable to True.

Then we set samna.speck2e.configuration.ReadoutConfig.readout_pin_monitor_enable

to True in order to monitor the 4 readout pins. If there is a valid result, an interrupt is

generated by the chip and a samna.speck2e.event.ReadoutPinValue event is sent to

Samna. The samna.speck2e.event.ReadoutPinValue contains 2 members, an index,

indicating the feature, and a timestamp in microsecond, indicating when this event

happened.

Note: * .Speck2e .* is the software developed for this dev kit, and will be supported
through the update of Samna

https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html#samna.speck2e.configuration.ReadoutConfig.low_pass_filter_disable
https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html#samna.speck2e.configuration.ReadoutConfig.readout_pin_monitor_enable
https://synsense-sys-int.gitlab.io/samna/reference/speck2e/event/index.html#samna.speck2e.event.ReadoutPinValue
https://synsense-sys-int.gitlab.io/samna/reference/speck2e/event/index.html#samna.speck2e.event.ReadoutPinValue
https://synsense-sys-int.gitlab.io/samna/


Make Intelligence Smarter

www.synsense.ai18

7. On board power monitor
The SpeckTM Dev Kit comes with on board power monitor capability for the five power

traces of SpeckTM through Samna: VDD_IO, VDD_RAM, VDD_LOGIC,

VDD_PIXEL_DIGITAL, VDD_PIXEL_ANALOG, which are represented by channel 0, 1,

2, 3, 4 respectively.
import samna
import time

dk = samna .device .open_device( 'Speck2eDevKit ')

power = dk .get_power_monitor()

buf = samna .BasicSinkNode_unifirm_modules_events_monitor() graph =

samna .graph .EventFilterGraph()

graph .sequential([power .get_source_node(), buf])

print(”Manual power monitor test:”)
power .single_shot_power_monitor()
time .sleep(1)
ps = buf .get_events()
[print(p) for p in ps]

time .sleep(2)

print(”Auto power monitor test:”)

# set freq to 1 Hz. The maximum power monitor rate is 1 0 0 Hz
power .start_auto_power_monitor(1.0)
time .sleep(5)
power .stop_auto_power_monitor()
ps = buf .get_events()
[print(p) for p in ps]

Note:
• The on board power monitor has about ± 50uW offset on each power trace .

• *.Speck2e.* is the software developed for this dev kit, and will be supported

through the update of Samna.

https://synsense-sys-int.gitlab.io/samna/


SpeckTM Dev Kit Datasheet

www.synsense.ai 19

8. Changelog
8.1 2.0 - 2022.11

• Update to the new version of dev kit

8.2 1.0 - 2021.11

• Initial publish SpeckTM Tiny kit



The information contained herein is for informational purposes only, 
and is subject to change without notice.

Intellectual Property Rights
SynSense owns the copyrights, trademarks and other intellectual property rights and interests in 

this document. The fact that SynSense provides this document to you does not affect the rights and 

interests of SynSense as described above.

Brand and product names are trademarks or registered trademarks of their respective owners.

No license, including implied or arising by estoppel, to any intellectual property rights is granted by 

this document. 

No Warranty
While every precaution has been taken in the preparation of this document, it may contain technical 

inaccuracies, omissions and typographical errors, and SynSense is under no obligation to update or 

otherwise correct this information. SynSense makes no representations or warranties with respect 

to the accuracy or completeness of the contents of this document, and assumes no liability of any 

kind, including the implied warranties of noninfringement, merchantability or �tness for particular 

purposes, with respect to the operation or use of SynSense hardware, software or other products 

described herein. 

Disclaimer
To the extent permitted by applicable law, SenSense shall not be liable for any direct, indirect, 

incidental, special, incidental or other damages, costs, liabilities or claims of any kind arising out of 

or in connection with the use of this document,with respect to the operation or use of SynSense 

hardware, software or other products described herein.

Applicable Terms and Conditions for products
Terms and limitations applicable to the purchase or use of SynSense’s products are as set forth in a 

signed agreement between you and SynSense or in SynSense's Standard Terms and Conditions.

© 2017-2022 SynSense – All rights reserved



Make Intelligence SmarterMake Intelligence SmarterMake Intelligence Smarter


	1. Introduction
	1.1  SpeckTM
	1.2  SpeckTM Dev Kit

	2.Features
	2.1  SpeckTM SoC chip
	2.1.1  Key features
	2.1.2  DVS layer
	2.1.3  DYNAP-CNN computing layers
	2.1.4  Readout layer

	2.2  Dev Kit

	3.Mechanical specification
	4.SpeckTM specification
	4.1  Block diagram
	4.2  DYNAP-CNN convolutional computing layers
	4.2.1  Parallel computing layers

	4.3  Congestion balancer
	4.4  Spike decimator
	4.5  Memory capacity
	4.6  Readout layer
	4.6.1  Interrupt
	4.6.2  Readout pins


	5.Getting started
	6.Readout pin monitoring
	7.On board power monitor
	8.Changelog

