icro-power
spoken
keyword

M

I
\\\ /)
« , \\ J \.
;.\ .\ '
' J o’
: /
~

in

spoff




© 2024 SynSense AG
Thurgauerstrasse 40, 8050 Zurich, Switzerland

Hannah Bos, Dylan Muir




We describe the implementation of a spoken audio keyword-
spotting (KWS) benchmark “"Aloha” on the Xylo Audio 2
(SYNS61210) Neuromorphic processor device. We ob-
tained high deployed quantized task accuracy, (95%), ex-
ceeding the benchmark task accuracy. We measured real
continuous power of the deployed application on Xylo. We
obtained best-in-class dynamic inference power (291 yW)
and best-in-class inference efficiency (6.6 uJ/Inf). Xylo
sets a new minimum power for the Aloha KWS benchmark,
and highlights the extreme energy efficiency achievable
with Neuromorphic processor designs.
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Audio processing with
Xylo™

Xylo™ Audio is a family of ultra-low-power audio inference chips, de-
signed for in- and near-microphone analysis of audio in real-time
energy-constrained scenarios. Xylo is designed around a highly effi-
cient integer-logic processor which simulates parameter- and activity-
sparse spiking neural networks (SNNs) using a leaky integrate-and-fire
(LIF) neuron model. Neurons on Xylo are quantised integer devices
operating in synchronous digital CMOS, with neuron and synapse state
quantised to 16 bit, and weight parameters quantised to 8 bit. Xylo is
tailored for real-time streaming operation, as opposed to accelerated-
time operation in the case of an inference accelerator. Xylo Audio
includes a low-power audio encoding interface for direct connection
to a microphone, designed for sparse encoding of incident audio for
further processing by the inference core.

In this report we present the results of a spoken KWS audio benchmark
deployed to Xylo Audio 2. We describe the benchmark dataset; the
audio preprocessing approach; and the network architecture and
training approach. We present the performance of the trained models,
and the results of power and latency measurements performed on the
Xylo Audio 2 development kit. We include for comparison previous
benchmarks of the Aloha KWS task on other neuromorphic devices,
mobile inference processors, CPUs and GPUs.




The Aloha Benchmark

We implemented the “Aloha” benchmark dataset introduced by Blouw
et. al [1]. Thisincludes a training set of approximately 2000 utterances
from 96 speakers, with a 3:1 ratio between the target phrase (“aloha”)
and non-target phrases. Figure 1 shows the distribution of sample
durations in the training and test datasets. In the results below we use
the provided test set of 192 samples.

We designed a network that identified “aloha” target samples by pro-
ducing one or more output events, and non-target samples by remain-
ing silent. We clipped or extended samples to 3s by padding with
silence.

Training set

Test set

0 1 2 3 4 5 6
Sample duration (s)

Figure 1: Distribution of sample durations in the Aloha dataset. In this work
we pad and clip samples to a uniform 3's duration (dashed line). This retains
the majority of data in both train and test datasets.

Audio preprocessing

We encoded each sample as sparse events, using a simulation of
the audio encoding hardware present on the Xylo Audio device. The
design of this preprocessing block is shown in Figure 2 [5]. Briefly,
this block is a streaming-mode buffer-free encoder, designed to op-
erate continuously on incoming audio. A low-noise amplifier with a
selectable gain of 0, 6 or 12dB amplifies the incoming audio. A band-
pass filter bank with 2nd-order Butterworth filters splits the signal into
16 bands, with centre frequencies spanning 40-16 940 Hz and with a
Q of 4. The output of these filters is rectified, then passed through a




leaky integrate-and-fire (LIF) neuron to smooth the signal and convert
it to events. The result is to convert a single audio channel into 16
sparse event channels with event rate in each channel corresponding

to the energy in each frequency band.
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Figure 2. Audio preprocessing approach. a The stages of audio preprocess-
ing in Xylo Audio 2. Single-channel audio arrives at a microphone (b). This
passes through a band-pass Butterworth filterbank, and is split into N = 16
frequency bands (c). Filter output is rectified (d) before passing through a
bank of LIF neurons that smooth and quantize the signals in each band. The
result is a set of sparse event channels (e), where the firing intensity in each
channel is proportional to the instantaneous energy in each frequency band.




Samples were trimmed to 3's, encoded using the preprocessing block
described here, and binned temporally to 100 ms. Our approach op-
erates in streaming-mode, analysing a continuous time-frequency
representation of the input audio, similar to a real-time Fourier trans-
form (see Figure 2e).

Network architecture

We use a feed-forward spiking neural network architecture called
“SynNet” [2] (Figure 3). This is a fully-connected multi-layer archi-
tecture, interleaving linear weight matrices with LIF neuron layers.
Each layer has a number of synaptic time constants, where the time
constants are defined as 1, = 2" « 10 ms, and neurons are evenly
distributed with the range of time constants for that layer. Layers with
two time constants therefore have half the neurons with synaptic time
constants 71 = 20ms and half with 7, = 40ms. Layers with 4 time
constants have a quarter of the neurons with synaptic time constants
71 = 20 ms; a quarter with 72 = 40 ms; a quarter with 73 = 80 ms and
so on. Membrane time constants for all neurons, as well as readout
neuron time constants, are set as 7,, = 20 ms.

We describe a given SynNet network architecture in the following
by defining the list of hidden layer widths H and corresponding list
of numbers of time constants 7. For example, the network H =
[160, 60, 60, 60, 60, 60] T = [2, 2,4, 4,8,8] has 6 hidden layers with a
first hidden layer width of 160 neurons, followed by 60 neurons, and so
on; and with the first hidden layer containing 2 synaptic time constants,
the second with 2 synaptic time constants, the third with 4 and so on.
One readout LIF neuron is present in each network, designed to be
active for the target class (the keyword “aloha”) and inactive for any
non-target audio.




Audio conversion Deep SNN with pyramid of time constants
I 1 I 1

Encoded
audio

Figure 3: The SynNet architecture used in this benchmark. Event-encoded
audio is provided as input, as described in Figure 2. The network consists of
a single feed-forward chain of fully-connected layers, using the LIF neuron
model. Several time constants are distributed over each layer, with shorter
time constants in early layers and longer time constants in later layers (see
text for details). A single readout LIF neuron is used in each network.

Training

Networks were defined using the open-source Rockpool toolchain
(https://rockpool.ai), with the torch back-end. During training, the
membrane potential of the readout neuron was taken as the network
output. Targets were defined as y = 0 for a non-target sample and
y =1 for a target sample.

The training loss for readout channels was defined as follows.

MSE (1//\// [mMy, g) ify =1
w; - MSE (x,0) ify =0

PeakLoss(x, y) =

where x is a membrane potential vector over time for a single readout
channel, y is the target for the channel (either 1 indicating a target for
this channelin this sample, or 0 indicating a non-target for this sample);
MSE is the mean-squared-error loss function; m = arg maxx is the
index of the peak value in x; M is the window duration to examine
from x following the peak; g is a vector g - 1, a target value that x
should match around its peak; w; is a weighting for the non-target
loss component; O is the vector of all-zeros. For the networks trained
here, we took M =140ms, g =1.5and w; = 1.4,
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Models were trained for 300 epochs, using the PyTorch Lightning
package to manage training.

Model performance

Several trained models with a range of total model sizes were eval-
uated for task performance on the test set. The presence of any
readout events during a sample was taken as a “target” prediction.
We computed the true positive and false positive rates over the test
set, as well as the binary accuracy. The model performance for several
model sizes is shown in Table 1.

We computed ROC (Receiver Operator Characteristic) curves for the
trained models on the test set, by varying the threshold of the output
neuron (Figure 4).

Power and inference rate

Models were quantized and deployed to Xylo devices using the Rock-
pool deployment pipline. Power was measured on the benchmark
application deployed to a Xylo Audio 2 device, on the Xylo Audio 2
hardware development kit (Figure 5), during streaming continuous
analysis of the Aloha test-set. The master clock frequency for Xylo
Audio was set to 6.25 MHz. Current measurements were taken using
on-board current monitors, at a frequency of 1280 Hz. Active power
was measured while streaming encoded audio for the entire test set
to the Xylo device. Idle power was measured by deploying a model
to the device, then measuring consumed power for five seconds with
no model input. Inference rate was defined in line with Blouw et al.,
with one inference corresponding to the processing of 10 time-steps
by the network [1].

11



Foralltrained models, Xylo required idle power of 216-217 yW and ac-
tive power of 468-514 pW, resulting in dynamic power of 251-298 yW.
Inference rate varied with model size, ranging 40-102 Inf/s. This cor-
responds to dynamic energy per inference of 2.4-7.3 yJ/Inf. Consider-
ing active energy per inference, we computed a range of 4.6-12.7 pJ/Inf.

Comparison with other inference
devices

We compared our results with several other hardware deployments of
the same benchmark task (Table 2; Figure 6). The model deployed to
Xylo Audio exhibited the lowest continuous idle, active and dynamic
power consumption of any of the comparison devices. Previous re-
sults for the Aloha benchmark report dynamic energy per inference;
Xylo Audio achieved the lowest dynamic energy per inference of all
comparison devices.

For the devices where total active power was reported, we also com-
pared active energy required per inference, as we believe this is a
more realistic system-level metric. Xylo Audio achieved the lowest
active energy per inference by an order of magnitude (Table 2 Act. E).

12



Nior  Model Acc. TPR FPR

461 H =[160, 60, 60, 60, 60,60] 96.88% 97.92% 4.17%
411 H=[110,60, 60, 60,60,60] 97.92% 97.92% 2.08%
401 H =[150,50,50,50,50,50] 97.40% 93.75% 6.25%
361 H=[60,60,60,60,60 60 9427% 97.92% 8.33%
341  H =[140,40,40,40,40,40] 98.44% 100.0% 3.12%
281 H =[130,30,30,30,30,30] 93.23% 94.79% 8.33%
221 H=[120,20,20,20,20,20] 97.40% 95.83% 1.04%
f461  H = [160,60,60,60,60,60] 9531% 91.67% 1.04%

Table 1. Test performance for trained models. Time constants T =
[2,2,4,4,8,8] for all models. N:o¢: Total neurons in the model; Acc.: Accu-
racy; TPR: True Positive Rate TPR = TP/(TP + FN),; FPR: False Positive
Rate FPR = FP/(FP 4+ TN). TQuantised model result deployed to the Xylo
architecture.

Q
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© ] S ] _
x 60 ; 80 Nm[—461
2 8 Neot=411
g 40 A g 70 — Nt0t=401
t < —o— Nior=361
12 —o— Nyx=341
20 i 60 1 — N[U[-=281
—— Ntut=221
0 - T T 1 50 T T T ¥
0 5 10 15 0.75 1.00 1.25 1.50 1.75
False Positive Rate (%) Threshold

Figure 4: ROC curves for the trained models in Table 1. a True Postive Rate
vs False Positve Rate curves. b Accuracy for the several models while varying
the threshold of the readout neuron.
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Figure 5: The Xylo™ Audio 2 hardware development kit (HDK). The HDK
is a USB bus-power board requiring a PC-host for power and interfacing.
The HDK interfaces with the open-source Rockpool toolchain for deployment
and testing. An analog microphone and a analog jack are provided for
direct analog single-channel differential input. Encoded audio data can
alternatively be streamed from the host PC. Inference is performed on the

Xylo device (red outline).

Hardware Idle Act. Dyn. Dyn. E Act. E
(mwW)  (mW)  (mW)  (mJ/Inf)  (mJ/Inf)

GPU [1] 14970 37830 22860 29.67 491
CPU [1] 17010 28480 11470 6.32 15.7
Jetson [1] 2640 4980 2340 558 11.9
MOVIDIUS [1] 210 647 437 1.5 2.2
LOIHI [1] 29 110 81 0.27 0.37
LOIHI[11] 29 40 11 0.037 0.13
SpiNNaker2 [11]  — — 71 0.0071 —

Xylo (ours) 0.216 0.507 0.291 0.0066 0.011

Table 2. KWS task energy benchmarking in comparison with traditional
and neuromorphic architectures. Power measured on physical devices in all
cases. Act.: Active; Dyn.: Dynamic; E: Energy per inference. Active energy is
not reported for SpiNNaker2 in the source benchmark paper [11], but this is
elsewhere reported as 390 m\W [6].
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Figure 6. Energy per inference comparison for the Aloha KWS benchmark
task on several hardware architectures. a Dynamic energy per inference
comparison. This is the standard metric reported for the Aloha benchmark.
b Active energy per inference comparison. Active energy is not reported
for SpiNNaker2 in the source benchmark paper [11], but this is elsewhere
reported as 390 m\W [é]. Energy per inference for Xylo defined as baseline
(1.0 x). See Table 2 for precise values.

15



Discussion

We implemented the Aloha spoken KWS benchmark task on Xylo
Audio 2. Our trained network achieved high task accuracy despite
its compact size, and the deployed quantised network suffered from
only a small drop in accuracy (<2 %). We measured power used by
the physical Xylo Audio 2 device while performing inference on the
benchmark test set, and computed the inference rate for the system.

We found that Xylo Audio 2 exhibited high task accuracy (higher than
the benchmark standard of 93%); performed inference faster than
real-time (>4 x speedup); and required 291 yW of dynamic power for
inference. Xylo Audio 2 beat all other benchmarked devices on idle
power, active power, dynamic power and inference efficiency.

The benchmark results reported here, as well as reported benchmarks
for other hardware devices, do not include the power required for
audio preprocessing. Most implementations of the Aloha benchmark
require computation of an MFCC spectrogram, which can be com-
putationally demanding. We used a simulation of the Xylo Audio 2
audio encoding block for audio preprocessing in simulation (Figure 2).
We have measured the power consumed by the audio pre-processing
block on Xylo Audio 2 as <50 uW.

Xylo Audio 2 is designed to operate as a real-time device for in- and
near-sensor signal processing. Here we are operating the device in
accelerated time, achieving a speed-up of >4 x, and an inference rate
of >40Hz. This is a lower inference rate than obtained for inference
accelerator designs such as LOIHI, SpiNNaker2 and GPUs. These de-
vices are designed to operate at high inference rates on large volumes
of data, often making extensive use of parallel processing. In con-
trast with these systems, Xylo is designed to be an efficient real-time
processor, operating on a continuous (i.e. non-batched) real-world
signal. This is reflected by the energy efficient performance of Xylo at
moderate inference rates.
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Our results underscore the efficiency of Neuromorphic processor de-

signs. Previous benchmark results for other Neuromorphic devices

have shown large-factor gains in energy efficiency over low-power

conventional processors [10], mobile inference processors and infer-
ence ASICs [3, 9, 8], commodity CPUs [1, 7, 9, 4] and GPUs [1, 7,
9, 4]. We show that Xylo Audio 2 sets a new standard for general-

purpose Neuromorphic processors, exhibiting micro-power operation

on continuous real-time signal processing tasks. (&
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