
Speck TM

Development Kit

Nov 2024
Manual

The information contained herein is for informational purposes only,
and is subject to change without notice.

Intellectual Property Rights
SynSense owns the copyrights, trademarks and other intellectual property rights and interests in

this document. The fact that SynSense provides this document to you does not affect the rights and

interests of SynSense as described above.

Brand and product names are trademarks or registered trademarks of their respective owners.

No license, including implied or arising by estoppel, to any intellectual property rights is granted by

this document.

No Warranty
While every precaution has been taken in the preparation of this document, it may contain technical

inaccuracies, omissions and typographical errors, and SynSense is under no obligation to update or

otherwise correct this information. SynSense makes no representations or warranties with respect

to the accuracy or completeness of the contents of this document, and assumes no liability of any

kind, including the implied warranties of noninfringement, merchantability or �tness for particular

purposes, with respect to the operation or use of SynSense hardware, software or other products

described herein.

Disclaimer
To the extent permitted by applicable law, SenSense shall not be liable for any direct, indirect,

incidental, special, incidental or other damages, costs, liabilities or claims of any kind arising out of

or in connection with the use of this document,with respect to the operation or use of SynSense

hardware, software or other products described herein.

Applicable Terms and Conditions for Products
Terms and limitations applicable to the purchase or use of SynSense’s products are as set forth in a

signed agreement between you and SynSense or in SynSense's Standard Terms and Conditions.

© SynSense – All rights reserved

Make Intelligence Smarter

www.synsense.ai support@synsense.ai

Content
1. Introduction .. 1

1.1. SpeckTM Chip .. 1
1.2. SpeckTM Development Kit .. 1

2. SpeckTM ... 2
2.1. Block Diagram..2
2.2. Key Features .. 2
2.3. Event Pre-processing Layer ... 2
2.4. DYNAPTMCNN Computational Layers ...3
2.5. Readout Layer .. 3

3. Getting Started Guide .. 4
3.1. Create a python environment ... 4
3.2. Install requirements and dependencies ...4
3.3. Connect to the Speck dev kit ..4
3.4. Visualise the Speck sensor output ...5
3.5. Record and display some data from the Speck sensor, in Python 7
3.6. Create and deploy a model to Speck ... 9
3.7. Next steps ...11
3.8. Detailed tutorials ..11

3.8.1 Enable Linear Leak Feature .. 11
3.8.2 Event Pre-processing Layer ..11
3.8.3 Spike Count Visualization ... 11
3.8.4 Power Monitor .. 12
3.8.5 DYNAPTMCNN Visualizer ..12
3.8.6 Using Readout Layer ... 12
3.8.7 Constraints - Available Network Architecture 12
3.8.8 Constraints - Available Operations .. 12
3.8.9 Chip Output Monitoring ...12

4. SpeckTMDevelopment Kit .. 13
4.1. Mechanical Specification .. 13
4.2. Development Data Sheet ...16

4.2.1 Preliminary Software ... 17
4.2.2 Samna Configuration ...17
4.2.3 Event Pre-processing Layer ..18

4.2.3.1. On/Off/Both/Merge Switching ... 19

Make Intelligence Smarter

support@synsense.ai www.synsense.ai

4.2.3.2. Pooling .. 19
4.2.3.3. ROI selection .. 19
4.2.3.4. Mirror Operation ... 20
4.2.3.5. DVS Event Filter ... 21

4.2.3.5.1. DVS Filter(Noise Filter) ... 21
4.2.3.5.2. Low Pass(Flicker Filter) .. 22
4.2.3.5.3. DVS filter + Hot Pixel Filter ... 23
4.2.3.5.4. Explanation of filter mode conflicts and slow-clock 23

4.2.3.6. Fan-out .. 23
4.2.3.7. Monitoring ...24
4.2.3.8. Disable the Event Pre-processing Layer24

4.2.4 DYNAPCNN Layers .. 25
4.2.4.1. Memory Capacity and Resolution of DYNAPCNN Layers 26
4.2.4.2. Congestion Balancer in DYNAPCNN Layers 29
4.2.4.3. Spike Decimator ... 29
4.2.4.4. Convolution and Spiking Neuron Operation30
4.2.4.5. Network Embedding ...31
4.2.4.6. Neuron Dynamics ...32

4.2.4.6.1. Neuron Initial State ..32
4.2.4.6.2. Membrane Reset Mechanism..................................... 32
4.2.4.6.3. Upper/Lower Firing Threshold 33

4.2.4.7. Leak/Bias Operation ...33
4.2.4.8. Fan-out .. 34
4.2.4.9. Monitoring ...34

4.2.5 Readout Layer (Post Processing) ...35
4.2.5.1. INTERRUPT Pins .. 35
4.2.5.2. Readout Pins .. 35
4.2.5.3. Readout Pin Monitoring ...36
4.2.5.4. Readout Time Window...37
4.2.5.5. Data Output Modes .. 37

4.2.6 Slow Clock ..38
4.2.6.1. Clock Speed..38
4.2.6.2. Usage .. 38
4.2.6.3. Generation .. 39

4.2.6.3.1. Generate by dividing the internal DVS raw event rate
39

mailto:fae@synsense.ai

Make Intelligence Smarter

www.synsense.ai support@synsense.ai

4.2.6.3.2. Provide by external clock source39
4.2.6.4. On Board Power Monitoring ..40

4.3. Connecting External DVS Resource .. 41
5. Software Tool Chain .. 42

5.1. Tonic ... 42
5.2. Sinabs ... 42
5.3. Samna ... 42
5.4. DVS tools ..45

5.4.1 DVS Recorder ...45
5.4.2 DVS Labeling Tool ... 46

6. Technical Support ..49
7. Change log ..50

Make Intelligence Smarter

support@synsense.ai www.synsense.ai

List of Figures

Figure 1 : SpeckTM Development Kit; ... 1
Figure 2 : Top Level Chip Diagram...2
Figure 3 : SpeckTM Development Kit Front View... 13
Figure 4 : SpeckTM Development Kit Back View ..14
Figure 5 : Explanation of Samna Configuration ..16
Figure 6 : Computation Pipeline of Event Pre-processing Layer 19
Figure 7 : Indication of ROI Selection Example .. 20
Figure 8 : DYNAPTMCNN layer Data Flow Pipeline ..25
Figure 9 : Explanation of Asynchronous Convolution and Spiking Activation

Operations ...31
Figure 10 : Diagram of Available Network Structure .. 34
Figure 11 : Diagram Illustration of Connecting External DVS......................... 41
Figure 12 : Software Tool Chain for SpeckTM .. 44
Figure 13 : Set path for DVS recorder ..45
Figure 14 : DVS tool record and settings .. 46
Figure 15 : DVS tool open bin file ...46
Figure 16 : DVS tool slicing setting ..47
Figure 17 : DVS tool visualization .. 47
Figure 18 : DVS tool add label .. 48
Figure 19 : DVS tool visualize the labeled data ...48
Figure 20 : The visualiser window,showing a live feed from the SpeckTM

sensor ...48

mailto:fae@synsense.ai

Make Intelligence Smarter

www.synsense.ai support@synsense.ai

List of Tables

Table 1 : DYNAPTMCNN Memory Distribution ..26
Table 2 : DVS Event Filter Block Memory Capacity ..26
Table 3 : Available Parameter Resolution ... 27
Table 4 : Spike Decimator Settings ..30
Table 5 : Readout Pin Mode Settings ...36
Table 6 : Readout Mode Selection Settings .. 37
Table 7 : Power Trace of SpeckTM ...40

Make Intelligence Smarter

www.synsense.ai support@synsense.ai1

1. Introduction
1.1. SpeckTM Chip
SpeckTM is a "sensor-compute integrated" neuromorphic intelligent dynamic vision
System on Chip(SoC), integrating an asynchronous neuromorphic dynamic vision
processor (DYNAPTMCNN) and a Dynamic Vision Sensor (DVS), also known as an
Event Camera. It features a large-scale Spiking Convolutional Neural Network (sCNN)
chip architecture based on an asynchronous logic paradigm, configurable with up to
320K spiking neurons.

SpeckTM is designed for always-on IoT devices and applications such as, human
behavior recognition, gesture recognition, facial detection, and surveillance, with
ultra-low power consumption and ultra-low latency.

1.2. SpeckTM Development Kit
As is shown in Figure 1, SpeckTM Development Kit(Dev Kit) is powered by the SpeckTM

chip, which provides a computational platform for user to interact with SpeckTM via a
host machine and software Samna. With the CQFP80 packaged SpeckTM chip, user can
mount lens based on expected vision field (the dev kit comes with 1.7mm and 3.6mm
M12-Mount lens). With the vision module packaging, it comes with a built-in 1.98mm
lens.

Figure１. SpeckTM Development Kit; Left: CQFP Packaging; Right: Camera Module Packaging

Make Intelligence Smarter

support@synsense.ai www.synsense.ai2

2. SpeckTM

2.1. Block Diagram
Figure 2 illustrates the top level block diagram of the SpeckTM. Between these blocks,
only Address Event Representation(AER) communication protocol is used for data
transmission. The internal DVS provides the sensory data inputs to event
pre-processing and filter function block. The output interface, input interface and main
computing resource(DYNAPTMCNN cores) are sharing a same event router.

Figure２. Top Level Chip Diagram

2.2. Key Features
1 Built-in DVS event pre-processing layer

9 DYNAPTMCNN computational layers

1 Readout layer

128x128 DVS pixel array, dynamic range not less than 80 dB (20-200k lux)

Note: When DVS is used between 20lux to 50lux, there is a slight decrease pf the
sensitivity of the optical sensor array.

2.3. Event Pre-processing Layer
Noise filtering

DVS polarity adjustment

ROI selection

Mirroring in both X/Y

Rotate in 90-degree steps

Make Intelligence Smarter

www.synsense.ai support@synsense.ai3

2.4. DYNAPTMCNN Computational Layers
Up to 9 DYNAPTMCNN layers

Max input dimension 128*128

Max feature output size 64*64

Max feature number 1024

Weight resolution 8 bits

Neuron state resolution 16 bits

Max kernel size 16*16

Stride {1,2,4,8} independent in X/Y

Padding [0..7] independent in X/Y

Pooling 1: 1, 1:2, 1:4

Fan-out of 2

Linear Leak operation on each layer

Spike count decimator on each layer

Spike congestion balancer on each layer

Parallel computing on layer 0 and layer 1, enabling larger throughput, can be used

as input layers

2.5. Readout Layer
15 classes and 1 idle class

Configurable moving average between [1, 16, 32] time steps

4 readout modes: inactive/threshold/max spiking class/specific class

4 readout pins and 1 interrupt pin

Make Intelligence Smarter

support@synsense.ai www.synsense.ai4

3. Getting Started Guide
3.1. Create a python environment
The Python-based tools for Speck development require a Python version between 3.8
and 3.12 inclusive. We recommend to use a python environment management utility
such as conda or pyenv.

To create a compatible python environment using conda, use the following command in
a terminal:

conda create --name speck 'python<=3.12'

3.2. Install requirements and dependencies
Development for Speck is performed using the open-source “sinabs” library from
SynSense. To install the library and all required dependencies, use the following
commands in a terminal:

conda activate speck

pip install sinabs

Set up UDEV rules on Linux
To connect with the Speck dev kit on Linux, you need to configure the UDEV rules on
your system. Follow the instructions at the link below:
https://synsense-sys-int.gitlab.io/samna/install.html#udev-rules-on-linux-systems

3.3. Connect to the Speck dev kit
Important: The Speck dev kit requires a USB 3.1 connection to your PC. Make sure you
use a USB3.1 cable (ideally the cable supplied with Speck), and avoid connecting to
Speck through a USB hub. Also ensure that the USB port you use to connect provides
the USB 3.1 standard.
Open Python in your python environment

] conda activate speck

] python

>>> import sinabs.backend.dynapcnn.io as sio

>>> sio.get_device_map()

{'speck2fdevkit:0': device::DeviceInfo(serial_number=, usb_bus_number=1, usb_device_address=1,

logic_version=0, device_type_name=Speck2fDevKit)}

https://synsense-sys-int.gitlab.io/samna/install.html#udev-rules-on-linux-systems

Make Intelligence Smarter

www.synsense.ai support@synsense.ai5

If you don’t see output similar to the line above:
 If on linux, did you enable the UDEV rules?
 Are you using a USB3.1 cable and USB3.1 port? Check with lsusb (on Linux) or

System Information on MacOS

3.4. Visualise the Speck sensor output
With these steps you can visualise the output of the Speck vision sensor in real time.
Open python in your python environment, and run the following code block:

import time

import sinabs.backend.dynapcnn.io as sio

devkit = sio.open_device("speck2fdevkit:0")

import samna

samna_graph = samna.graph.EventFilterGraph()

_, _, streamer = samna_graph.sequential(

[

devkit.get_model_source_node(), # Specify the source of events to this graph as the devkit

"Speck2fDvsToVizConverter", # Convert the events to visualizer events

"VizEventStreamer", # Stream events to a visualizer via a streamer node

]

)

visualizer_port = "tcp://0.0.0.0:40001"

Launch visualizer

gui_process = sio.launch_visualizer(

receiver_endpoint=visualizer_port, disjoint_process=True

)

time.sleep(1.0)

Visualizer configuration branch of the graph.

visualizer_config, _ = samna_graph.sequential(

[samna.BasicSourceNode_ui_event(), streamer] # For generating UI commands

)

Connect to the visualizer

streamer.set_streamer_destination(visualizer_port)

if streamer.wait_for_receiver_count() == 0:

raise Exception(f"Connecting to visualizer on {visualizer_port} fails.")

Make Intelligence Smarter

support@synsense.ai www.synsense.ai6

Specify which plot is to be shown in the visualizer

plot1 = samna.ui.ActivityPlotConfiguration(

image_width=128, image_height=128, title="DVS Layer", layout=[0, 0, 1, 1]

)

visualizer_config.write([samna.ui.VisualizerConfiguration(plots=[plot1])])

time.sleep(1.0)

samna_graph.start()

time.sleep(1.0)

devkit_config = samna.speck2f.configuration.SpeckConfiguration()

enable monitoring the inputs from the DVS sensor

devkit_config.dvs_layer.raw_monitor_enable = True

Apply this configuration

devkit.get_model().apply_configuration(devkit_config)

print("Press ENTER to terminate...")

input()

Stop the graph

samna_graph.stop()

If we used a sub-process to launch the visualizer, use that to terminate the visualizer.

if gui_process:

gui_process.terminate()

gui_process.join()

Make Intelligence Smarter

www.synsense.ai support@synsense.ai7

Figure３. The visualizer window, showing a live feed from the Speck sensor

3.5. Record and display some data from the Speck sensor,
in Python

This code needs the plotting and visualization library matplotlib. To install this in your
python environment, use the follow commands at the terminal:

conda activate speck

pip install matplotlib

Then open python, and paste the following code block:
import sinabs.backend.dynapcnn.io as sio

import samna

import time

import numpy as np

from typing import List

import matplotlib.pyplot as plt

- Open the Speck devkit device

devkit = sio.open_device("speck2fdevkit:0")

- Get a sink node to read events from the devkit

sink = samna.graph.sink_from(devkit.get_model_source_node())

Make Intelligence Smarter

support@synsense.ai www.synsense.ai8

- Configure the Speck devkit to monitor DVS events

Get a Speck 2f configuration, and enable input monitoring

devkit_config = samna.speck2f.configuration.SpeckConfiguration()

devkit_config.dvs_layer.raw_monitor_enable = True

Apply this configuration to the Speck device

devkit.get_model().apply_configuration(devkit_config)

- Enable timestamping on the dev kit

stopwatch = devkit.get_stop_watch()

stopwatch.start()

stopwatch.reset()

- Define function to convert events into a numpy array

def dvs_events_to_numpy(events: List[samna.speck2f.event.DvsEvent]) -> np.ndarray:

return np.array(

[

(ev.x, ev.y, ev.p, ev.timestamp)

for ev in events

if isinstance(ev, samna.speck2f.event.DvsEvent)

],

dtype = [('x', 'u1'), ('y', 'u1'), ('p', bool), ('t', 'u4')],

)

Now you can copy/paste and run the following code to accumulate and display events
into frames of 1 second duration. You can repeat this code block as many times as you
like.

- Record events for 1 second

sink.clear_events()

time.sleep(1.)

events = dvs_events_to_numpy(sink.get_events())

- Accumulate events into a frame

frame = np.zeros((128, 128))

np.add.at(frame, (events['x'], events['y']), 1.)

- Show the frame

plt.imshow(frame.T)

plt.show()

Make Intelligence Smarter

www.synsense.ai support@synsense.ai9

3.6. Create and deploy a model to Speck
These steps show you how to deploy a simple model to Speck, to run on the dev kit.

import torch

import torch.nn as nn

from typing import List

from sinabs.from_torch import from_model

from sinabs.backend.dynapcnn import DynapcnnNetwork

ann = nn.Sequential(

nn.Conv2d(1, 20, 5, 1, bias=False),

nn.ReLU(),

nn.AvgPool2d(2,2),

nn.Conv2d(20, 32, 5, 1, bias=False),

nn.ReLU(),

nn.AvgPool2d(2,2),

nn.Conv2d(32, 128, 3, 1, bias=False),

nn.ReLU(),

nn.AvgPool2d(2,2),

nn.Flatten(),

nn.Linear(128, 500, bias=False),

nn.ReLU(),

nn.Linear(500, 10, bias=False),

)

Convert your model to SNN

sinabs_model = from_model(ann, batch_size=1, add_spiking_output=True) # Your sinabs SNN model

Convert your SNN to `DynapcnnNetwork`

hw_model = DynapcnnNetwork(

sinabs_model.spiking_model,

discretize=True,

input_shape=(1, 28, 28)

)

Deploy model to a dev-kit

hw_model.to(device="speck2fdevkit:0")

The Python terminal should show this output:
Out[6]:

DynapcnnNetwork(

(sequence): Sequential(

Make Intelligence Smarter

support@synsense.ai www.synsense.ai10

(0): DynapcnnLayer(

(conv_layer): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1), bias=False)

(spk_layer): IAFSqueeze(spike_threshold=Parameter containing:

tensor(636.), min_v_mem=Parameter containing:

tensor(-636.), batch_size=1, num_timesteps=-1)

(pool_layer): SumPool2d(norm_type=1, kernel_size=(2, 2), stride=None, ceil_mode=False)

)

(1): DynapcnnLayer(

(conv_layer): Conv2d(20, 32, kernel_size=(5, 5), stride=(1, 1), bias=False)

(spk_layer): IAFSqueeze(spike_threshold=Parameter containing:

tensor(11364.), min_v_mem=Parameter containing:

tensor(-11364.), batch_size=1, num_timesteps=-1)

(pool_layer): SumPool2d(norm_type=1, kernel_size=(2, 2), stride=None, ceil_mode=False)

)

(2): DynapcnnLayer(

(conv_layer): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), bias=False)

(spk_layer): IAFSqueeze(spike_threshold=Parameter containing:

tensor(8621.), min_v_mem=Parameter containing:

tensor(-8621.), batch_size=1, num_timesteps=-1)

(pool_layer): SumPool2d(norm_type=1, kernel_size=(2, 2), stride=None, ceil_mode=False)

)

(3): DynapcnnLayer(

(conv_layer): Conv2d(128, 500, kernel_size=(1, 1), stride=(1, 1), bias=False)

(spk_layer): IAFSqueeze(spike_threshold=Parameter containing:

tensor(5748.), min_v_mem=Parameter containing:

tensor(-5748.), batch_size=1, num_timesteps=-1)

)

(4): DynapcnnLayer(

(conv_layer): Conv2d(500, 10, kernel_size=(1, 1), stride=(1, 1), bias=False)

(spk_layer): IAFSqueeze(spike_threshold=Parameter containing:

tensor(2841.), min_v_mem=Parameter containing:

tensor(-2841.), batch_size=1, num_timesteps=-1)

)

)

)

Now you can send some events to Speck to run through your deployed model:
- Format data as required to input to Speck

def x_y_t_p_to_xytp(x: np.array, y: np.array, t: np.array, p: np.array) -> np.array:

length = np.size(x)

array = np.zeros(length, dtype = [('x', 'u1'), ('y', 'u1'), ('t', 'u4'), ('p', bool)])

array['x'] = np.round(x)

Make Intelligence Smarter

www.synsense.ai support@synsense.ai11

array['y'] = np.round(y)

array['t'] = np.round(t)

array['p'] = p.astype(bool)

return array

- Generate some random events

xytp = x_y_t_p_to_xytp(np.random.randint(0, 28, 10), np.random.randint(0, 28, 10), 0., np.array(True))

- Get a chip factory to be able to convert events

cf = sinabs.backend.dynapcnn.chip_factory.ChipFactory('speck2fdevkit')

- Convert random event array to list of Speck events

input_evs = cf.xytp_to_events(xytp, 0, reset_timestamps=True)

- Pass events to model running on Speck

hw_model(input_evs)

3.7. Next steps
 Train a spiking CNN for MNIST:

https://sinabs.readthedocs.io/en/v2.0.0/tutorials/nmnist.html
 Deploy an MNIST model to Speck for inference:

https://sinabs.readthedocs.io/en/v2.0.0/tutorials/nir_to_speck.html

3.8. Detailed tutorials
3.8.1 Enable Linear Leak Feature
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/leak_neuron.html

3.8.2 Event Pre-processing Layer
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/play_with_speck
_dvs.html

3.8.3 Spike Count Visualization
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/visualize_spike_c
ount.html

https://sinabs.readthedocs.io/en/v2.0.0/tutorials/nmnist.html
https://sinabs.readthedocs.io/en/v2.0.0/tutorials/nir_to_speck.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/leak_neuron.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/play_with_speck_dvs.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/play_with_speck_dvs.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/visualize_spike_count.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/visualize_spike_count.html

Make Intelligence Smarter

support@synsense.ai www.synsense.ai12

3.8.4 Power Monitor
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/power_monitorin
g.html

3.8.5 DYNAPTMCNN Visualizer
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/visualizer.html

3.8.6 Using Readout Layer
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/using_readout_la
yer.html

3.8.7 Constraints - Available Network Architecture
https://synsense.gitlab.io/sinabs-dynapcnn/faqs/available_network_arch.html

3.8.8 Constraints - Available Operations
https://synsense.gitlab.io/sinabs-dynapcnn/faqs/available_algorithmic_operation.html

3.8.9 Chip Output Monitoring
https://synsense.gitlab.io/sinabs-dynapcnn/faqs/output_monitoring.html

https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/power_monitoring.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/power_monitoring.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/visualizer.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/using_readout_layer.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/using_readout_layer.html
https://synsense.gitlab.io/sinabs-dynapcnn/faqs/available_network_arch.html
https://synsense.gitlab.io/sinabs-dynapcnn/faqs/available_algorithmic_operation.html
https://synsense.gitlab.io/sinabs-dynapcnn/faqs/output_monitoring.html

Make Intelligence Smarter

www.synsense.ai support@synsense.ai13

4. SpeckTMDevelopment Kit
4.1. Mechanical Specification

Figure４. SpeckTM Development Kit Front View

Make Intelligence Smarter

support@synsense.ai www.synsense.ai14

Figure５. SpeckTM Development Kit Back View

Make Intelligence Smarter

www.synsense.ai support@synsense.ai15

1. SpeckTM SoC

2. High Precision Power Monitor

3. FPGA JTAG (RSV)

4. Flash

5. USB 3.0 Micro-B Port / Connector

6. System Reset Button

7. USB 3.0 Controller CFG Switch (RSV)

8. System Power LED

9. FPGA Configuration Done Indicator

10.USB 3.0 Controller State Indicator

11.Debug State Indicator

12.SoC Power Traces State Indicator

13.FPGA

14.USB 3.0 Controller

Make Intelligence Smarter

support@synsense.ai www.synsense.ai16

4.2. Development Data Sheet

Figure６. Explanation of Samna Configuration

This chapter illustrates the detailed function block of SpeckTM and how these can be
configured with the development kit and host machine software samna (see section 4.3
for more details).

The chip is typically configured using a bitstream that represents the configuration of
individual registers. For high-level interaction with the chip, samna provides all essential
APIs, eliminating the need for users to be concerned about low-level register addresses
and bitstream generation.

As is shown in Figure 5. The samna configuration profile contains the model layer
config(SCNN architecture and parameters) and the chip config.

For the model layer config, we provide an efficient software tool
sinabs-dynapcnn(section 4.2) that supports converting a sinabs/pytorch model to chip
compatible model. This stage usually contains the translation of pre-trained network to
chip resources mapping and the quantization of network parameters.

Regarding the chip configuration, it is typically intended for advanced users who wish to
implement their customized chip settings. This involves manually modifying neuron
dynamics, connectivity between DYNAPTMCNN layers, event-preprocessing layers, and

Make Intelligence Smarter

www.synsense.ai support@synsense.ai17

readout layers.

4.2.1 Preliminary Software
The SpeckTM Dev Kits build essential resources to support the user interact with
SpeckTM.

Begin by following the Getting Started guide in section 3.

4.2.2 Samna Configuration
With a pre-trained neural network, the hardware configuration for Speck can be
generated via sinabs-dynapcnn software with:

dynapcnn_network = DynapcnnNetwork(snn=snn, discretize=True, dvs_input=True, input_shape=(1, 128, 12

8))

samna_cfg = dynapcnn_network.make_config(device="speck2fmodule")

Note: The device name str can be different depends on the devkit. The example shows the speck2f dev-kit

with module packaging

Once this configuration object is generated, it contains the network architecture profile
and parameters from the snn. The configuration also contains all the chip settings that
allows user to manually define their implementation. The main structure of this
configuration file is shown as follow:

samna_config

-cnn_layers # stands for DYNAPCNN layers

-0

-biases

-destinations

-dimensions

-input_congestion_banlancer_enable

-leak_enable

-leak_internal_slock_clk_enable

-monitor_enable

-neurons_initial_value

-output_decimator_enable

-output_decimator_interval

-return_to_zero

-threshold_high

-threshold_low

-weights

-1

Make Intelligence Smarter

support@synsense.ai www.synsense.ai18

...up to 8

-dvs_filter # exsist in event-preprocessing layer

-enable

-filter_size

-hot_pixel_filter_enable

-internal_slow_clk

-low_pass_mode_enable

-threshold

-dvs_layer # exsist in event-preprocessing layer

-cut

-destination

-merge

-mirror

-mirror_diagonal

-monitor_enable

-off_channel

-on_channel

-origin

-pass_sensor_events

-pooling

-raw_monitor_enable

-readout

-enable

-internal_slow_clk

-low_pass_filter32_not16

-low_pass_filter_disable

-monitor_enable

-output_mode_sel

-output_neuron_num

-override_threshold_max

-readout_configuration_sel

-readout_pin_monitor_enable

-threshold

4.2.3 Event Pre-processing Layer
The general event pre-processing pipeline is shown as Figure 6, the function block on
the board is executed exact in this sequence order.

Make Intelligence Smarter

www.synsense.ai support@synsense.ai19

Figure７. Computation Pipeline of Event Pre-processing Layer

For the hands-on tutorial of how to use the layer, please refer to section 5.5.

4.2.3.1. On/Off/Both/Merge Switching

The events generated by DVS is featured with two polarity on/off, which indicates the
actual light intensity change from low-high and high-low respectively. The two channel
can be configured flexibly as:

Merge two polarities as one channel(Sum):
samna_config.dvs_layer.merge = True

Keep only one channel:
keep only on channel

samna_config.dvs_layer.off_channel = False

samna_config.dvs_layer.on_channel = True

keep only off channel

samna_config.dvs_layer.off_channel = True

samna_config.dvs_layer.on_channel = False

4.2.3.2. Pooling

The pooling in event pre-processing layer is simply implemented by mapping
mechanism between source neurons and target neuron. This is done by integrating the
events from Region of Interest(ROI) to destination. In pre-processing layer, pooling
supports the kernel size of [1, 2, 4] for both X and Y axis, the stride is default to set the
same with the kernel size.

Example of configure a 2x2 stride of 2 pooling on pre-processing layer:
samna_config.dvs_layer.pooling.x = 2

samna_config.dvs_layer.pooling.y = 2

4.2.3.3. ROI selection

The ROI selection is designed for user to freely use the resolution of internal DVS. The
function can be used to select a rectangle region with defined top-left and bottom-right
corner coordinate. The result ROI will be automatically shift to top-left start from (0, 0). In
software, it is set the object origin stands for top-left corner and cut stands for

Make Intelligence Smarter

support@synsense.ai www.synsense.ai20

bottom-right corner. An example as shown in Figure 7 for select the center input of
64x64 region is:

Figure８. Indication of ROI Selection Example

samna_config.dvs_layer.origin.x = 32

samna_config.dvs_layer.origin.y = 32

samna_config.dvs_layer.cut.x = 96

samna_config.dvs_layer.cut.y = 96

4.2.3.4. Mirror Operation

The mirror enables the user apply flip based on pixel coordinates. This including flip
horizontally(along y axis), vertically(along x axis) as well as swapping the axis between
x and y.

By using samna:

Make Intelligence Smarter

www.synsense.ai support@synsense.ai21

Horizontal Flipping

samna_config.dvs_layer.mirror.x = True

Vertical Flipping

samna_config.dvs_layer.mirror.y = True

Swap X and Y axis

samna_config.dvs_layer.mirror_diagonal = True

4.2.3.5. DVS Event Filter

The built-in filter supports 3 types of the filtering operation allows the user to flexibly
configure the denoising requirements based on DVS input.

These are:
 DVS Filter(shot noise filter)
 Low Pass(flicker noise filter)
 Hot Pixel Filter + DVS filter

4.2.3.5.1. DVS Filter(Noise Filter)

The DVS filter block included in the pre-processing layer in order to filter the neighboring
sparse noisy activity. In general, an event at a position (x,y) is forwarded by the filter
when at least one pixel in the vicinity of (x,y) has spiked in a defined time window before
this event.

Whenever a pixel event arrives at the filter, the filter stores its timestamp and coordinate
in a memory space. Then when a new pixel event arrives, the filter checks the
pre-defined area in a number of clock-cycles. The actual timestamp are recorded using
a counter and each count is triggered by the slow-clock(3.2.6) source(for more
information please check the slow-clock section).

The filter can be configured in follow aspects:
To enable the filter:

samna_config.dvs_filter.enable = True

a. Filter Window Size
The window size defines the area of the neighboring in the spatial domain. The filter size
can go from 1x1 to 15x15.

Make Intelligence Smarter

support@synsense.ai www.synsense.ai22

setting a 3x3 filter that checking its surroundings

samna_config.dvs_filter.filter_size.x = 3

samna_config.dvs_filter.filter_size.y = 3

b. Filter Delta/Threshold
The Delta threshold of filter is used to compare the current counter value with the value
of pixels neighboring the current activated pixel. If any of the neighboring pixels has a
value difference less than the Delta value, the filter will let current spike pass through,
other wise the current event is blocked.

setting the Delta threshold to 2

samna_config.dvs_filter.enable = True

samna_config.dvs_filter.threshold = 2

4.2.3.5.2. Low Pass(Flicker Filter)

In this mode, the filter works as a low-pass filter. This mode can be potentially used to
filter out 50/60Hz light flicking noise produced by some lights such as fluorescent or
LEDs.

Low-pass filter is used to filter the events which the time interval below a certain
threshold, solving the flickering problems. If there is another event in a certain period
(which depends on slow clock rate and threshold), the event would be regarded as
noise and be filtered. The usage of this filter is also highly depends on the setting of
slow-clk. e.g. slow-clock rate is 1000Hz(1ms) and threshold is 25, so the period is 1x25
=25 ms, which means if the time interval of two events in same pixel is lower than 25 ms,
the event would be filtered. So in flickering environment, those high-frequency flickering
noise would be filter after enabling low-pass filter mode.

To enable the filter:
samna_config.dvs_filter.enable = True

samna_config.dvs_filter.hot_pixel_filter_enable = False

samna_config.dvs_filter.low_pass_mode_enable = True

Then the filter size should be set to 0 and set the threshold
samna_config.dvs_filter.filter_size.x=0

samna_config.dvs_filter.filter_size.y=0

samna_config.dvs_filter.threshold = 25

Make Intelligence Smarter

www.synsense.ai support@synsense.ai23

4.2.3.5.3. DVS filter + Hot Pixel Filter

The hot pixel filter is used to filter the expected high frequency signal that typically
caused by the manufacture mismatch of DVS circuitry. The hot pixel usually is fixed to a
location and has a firing rate of 50-1000Hz. The threshold is also highly depends on the
setting of external slow-clk(section 3.2.6).

To use the Hot Pixel Filter
samna_config.dvs_filter.enable = True

samna.config.dvs_filter.hot_pixel_filter_enable = True

samna.config.dvs_filter.threshold = 5 # setting up the threshold

4.2.3.5.4. Explanation of filter mode conflicts and slow-clock

Due the restriction of hardware resources, The filter mentioned in 3.2.4.5.1-3 can not be
fully implemented at the same time. The user should only configure the filter operation in
one of the mode:

 Low Pass Mode
 DVS Filter model
 DVS Filter + Hot Pixel Filter Mode

Since the filter performance is highly depended on the timing reference, the setting of
the external/internal slow-clock is crucial for the correct usage of these filtering
techniques. The development kit with samna provides an efficient way for user to set up
the slow clock, for further information, please check section 3.2.6.

4.2.3.6. Fan-out

The event pre-processing layer can maximally have fan out of two. This stands that the
output event from the layer can be copied and forward to 2 different destination. By
default, the fan-out of pre-processing layer is set to be fed into the first layer of designed
neural network.

To set multiple destination of the layer:
setting the output to DYNAPCNN core 4

samna_config.dvs_layer.destinations[0] = 4

Make Intelligence Smarter

support@synsense.ai www.synsense.ai24

setting a copy of output to DYNAPCNN core 5

samna_config.dvs_layer.destinations[0] = 5

4.2.3.7. Monitoring

The monitor in event pre-processing layer enables the user to receive all the events that
arrives here. When enabled, output messages of the DVS pre-processing block are
forwarded on the monitor bus to the output serial interface. This is typically opened
when user tends to output DVS events. To use it, simply turns the monitor on by:

samna_config.dvs_layer.monitor_enable = True

4.2.3.8. Disable the Event Pre-processing Layer

If disabled, the internal sensor events are dropped, i.e., not forwarded to the DVS
pre-processing block. This is typically used when sensor data is provided by an external
source (Ext DVS Mode) or feeding customized data from host machine.

Disable the event from internal dvs and event-preprocessing layer

samna_config.dvs_layer.pass_sensor_event = False

Make Intelligence Smarter

www.synsense.ai support@synsense.ai25

4.2.4 DYNAPCNN Layers
The main computational resources of SpeckTM are 9 configurable SCNN layers called
DYNAPCNN layers or cores. As is shown in Figure 8, each of these layers can
implement a sequence computation that equivalent to [convolution->spiking
neuron->pooling] structure. (Note all the term “layer” in the doc refer to a single
DYNAPCNN layer/core). Individual core can be connected to form a user defined
network of any size up to the maximum available resources. Layer memory sizes are
balanced to provide a flexible balance of resources, with larger or smaller layers. The
data flow between core and core are purely based on Address Event
Representation(AER) protocol, where only event signals are used in communication
between layers.

Figure９. DYNAPTMCNN layer Data Flow Pipeline

Make Intelligence Smarter

support@synsense.ai www.synsense.ai26

4.2.4.1. Memory Capacity and Resolution of DYNAPCNN Layers

The SpeckTM is divided into 9 cores, each of which executes a single DYNAPCNNTM

layer(core). The memory capacities of the cores are different, and restrict the
implementation of larger layers to specific cores.

Table 1: DYNAPTMCNN Memory Distribution

Core. Kernel memory
(WORD)

Leak memory
(WORD)

Neuron memory
(WORD)

0 16 Ki 1 Ki 64 Ki

1 16 Ki 1 Ki 64 Ki

2 16 Ki 1 Ki 64 Ki

3 32 Ki 1 Ki 32 Ki

4 32 Ki 1 Ki 32 Ki

5 64 Ki 1 Ki 16 Ki

6 64 Ki 1 Ki 16 Ki

7 16 Ki 1 Ki 16 Ki

8 16 Ki 1 Ki 16 Ki

Table 2: DVS Event Filter Block Memory Capacity

SRAM Filter memory (WORD)

DVS Event Filter 16 Ki

Make Intelligence Smarter

www.synsense.ai support@synsense.ai27

Table 3: Available Parameter Resolution

Memory Type Word Length

1 Kernel 8 bits

2 Neuron 16 bits

3 Leak 16 bits

4 Filter 16 bits

Let a network be defined by the number of input features c, the number of output
features f, and the kernel dimensions kx and ky. The theoretical number of WORDs
required for kernel memory KM is then

KM = cf kx ky

The total number of memory WORDs required is

KMT = c·2 log2 (kxky) + log2 (f)

The required number of neuron memory WORDs NM depends on the dimensions of the

input features cx and cy, as well as the stride and padding sx , sy, and px, py.

fx =
�� − �� + 2��

��
+ 1

fy =
�� − �� + 2��

��
+ 1

NM = f fx fy

Again the total number of required WORDs on the chip side is larger.

NMT = f·2「 log2 (fy)」 +「 log2 (fx)」

Make Intelligence Smarter

support@synsense.ai www.synsense.ai28

Taking an example of convolutional layer

conv_layer = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=(3,3), stride=(1,1), padding=(1,1))

Assuming the input dimension of 64x64, the output feature map size can be obtained
as:

fx =
64− 3 + 2 ∗ 1

1
+ 1 = 64

fy =
64− 3 + 2∗ 1

1
+ 1 = 64

The actual kernel memory entries is calculated thus:

�푀� = 16 ∗ 32 ∗ 4 ∗ 4 = 8��

The actual neuron memory entries is then:

�푀� = 64 ∗ 64 ∗ 32 = 128��

Where 128Ki neuron exceeds any available neuron memory constrains among 9 layers,
thus this layer **CANNOT** be deployed on the chip.

In addition to the neuron memory and kernel memory constraints, the hardware design
limits few of dimensions in terms of convolutional layer settings as listed out in section
2.2:
 For output channel number/feature number of the convolutional layer, maximally

can be set to 1024.
up to 1024

conv_layer = nn.Conv2d(in_channels=16, out_channels=1024, kernel_size=(3,3), stride=(1,1), padding=(1,1))

 For convolutional kernel size, maximally can be set to 16x16
up to 16x16

conv_layer = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=(16,16), stride=(1,1), padding=(1,1))

 For convolutional kernel stride, the available choice are {1,2,4,8}
up to 8x8

conv_layer = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=(16,16), stride=(1,1), padding=(1,1))

Make Intelligence Smarter

www.synsense.ai support@synsense.ai29

 For padding size, available choice are {0,1,2...7}
up to 7x7

conv_layer = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=(16,16), stride=(1,1), padding=(1,1))

 For pooling kernel size, available choice are {1x1, 2x2, 4x4}
up to 4x4

conv_layer = nn.AvgPool2d(kernel_size=(4,4))

 For output feature map size after convolution, maximally accepts 64x64.

4.2.4.2. Congestion Balancer in DYNAPCNN Layers

In SpeckTM, DYNAPCNN layer has a congestion balancer block at its data path input.
This is designed for reducing event bandwidth as user needed.

The congestion balancer enables dropping of input spikes at any time when the
convolutional core of the layer is busy processing previous event. Specifically, if a train
of spikes are sent to the layer, a number of them will be accepted (via some buffering)
and the convolution computation starts. If, for example, the kernel is very large and a
new spike arrives while the layer input is busy, this new spike will be dropped. As soon
as the layer is again available, a coming spike will be processed.

This block is then able to adapt the spike input frequency to the convolution by capping
it to the maximum that the layer can process. When disabled, the block will let all spikes
through. This feature is controlled by the input_congestion_balancer_enable.

Example:

Open congestion balancer for DYNAPCNN layer 0 and layer 1

samna_config.cnn_layers[0].input_congestion_balancer_enable = True

samna_config.cnn_layers[1].input_congestion_balancer_enable = True

4.2.4.3. Spike Decimator

For each DYNAPCNN layer, it is equipped with a decimator block at its data path
output. The decimator block enables the user to reduce the spike rate at the output of a
convolutional layer. When disabled, the block will let all spikes through as normal.
This feature is controlled by the output_decimator_enable with configurable choice from
2 to 512.

https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html#samna.speck2f.configuration.CnnLayerConfig.input_congestion_balancer_enable
https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html#samna.speck2f.configuration.CnnLayerConfig.output_decimator_enable

Make Intelligence Smarter

support@synsense.ai www.synsense.ai30

Table 4: Spike Decimator Settings

Decimator_interval Description

0 1 spike passed every 2

1 1 spike passed every 4

2 1 spike passed every 8

3 1 spike passed every 16

4 1 spike passed every 32

5 1 spike passed every 128

6 1 spike passed every 256

7 1 spike passed every 512

Example:

enable the decimator for DYNAPCNN core 3 and set 50% drop of its output events

samna_config.cnn_layers[3].output_decimator_enable = True

samna_config.cnn_layers[3].output_decimator_interval = 0

4.2.4.4. Convolution and Spiking Neuron Operation

In each DYNAPTMCNN layer, whenever a spike arrives, it follows a async convolution,
spiking neuron activation and pooling operation. As is shown in Figure 9, SpeckTM is
highly optimized with event-driven processing, the event-driven convolution does not
operate on a frame basis but only happens when an event arrives at the convolution
pipeline. When a spike with address information reaches an SNN core, the kernel value
and destination neuron position are obtained by searching the address. Then, the
neuron states are updated asynchronously based on the synaptic operation.
Asynchronous convolution is not affected by the arrival of other input events or cores, so
it can be efficiently distributed in parallel for multiple events at different spatial positions.
If pooling is applied to the pipeline, it happens after the spiking neuron activation and
implement the same as described in 3.2.3.2 which maps the destination to a same
neuron.

Make Intelligence Smarter

www.synsense.ai support@synsense.ai31

For each channel in a layer, it shares a single 16bit int value for biases/leak(check
section 3.2.4.7 for further detail). For each layer, it shares a single 16bit int value for
threshold_high and threshold low for all neurons. For more restrictions of convolutional
layer and spiking layer setting, check section 2.4 and section 3.2.4.1.

Figure１０. Explanation of Asynchronous Convolution and Spiking Activation Operations

4.2.4.5. Network Embedding

Typically, with a pre-defined sequential SCNN network structure, it is suggested to
implement the conversion via the built-in API from sinabs-dynapcnn package. The
connectivity, parameter quantization and bitstream configuration can be automatically
translated to samna configuration.

An example of converting the network from pytorch model:

network = nn.sequential([

nn.conv2d(),

IAFsqueeze(),

nn.pool(),

up to here is using 1 dynapcnn layer

nn.conv2d(),

IAFsqueeze(),

nn.Flatten(),

nn.Linear(),

IAFsqueeze(),

up to here is using 2 dynapcnn layer

Make Intelligence Smarter

support@synsense.ai www.synsense.ai32

])

dynapcnn_network = DynapcnnNetwork(snn=network, discretize=True, dvs_input=True, input_shape=(1, 128,

128))

samna_cfg = dynapcnn_netowrk.make_config(device="speck2fmodule")

However, user can still freely modify the network architecture by representation in the
samna configuration:

For a instance, checking the parameter of core 0

samna_config.cnn_layers[0].biases # bias parameter

samna_config.cnn_layers[0].weights # weight parameter

samna_config.cnn_layers[0].destinations # connectivities

4.2.4.6. Neuron Dynamics

For each DYNAPTMCNN layer, neuron can be set in several aspects to achieve different
neuron dynamics

4.2.4.6.1. Neuron Initial State

By the default, the neuron initial membrane potential can be automatically translated
into the configuration if the network configuration is converted from sinabs-dynapcnn.
However, users are still able to manually define any neurons’ initial membrane potential
by setting values to object:

For a instance, checking the parameter of core 0

samna_config.cnn_layers[0].neurons_initial_value # bias parameter

4.2.4.6.2. Membrane Reset Mechanism

For neuron reset mechanism, it refers to the operation for the neuron state/membrane
potential when it emit a spike. SpeckTM supports two ways of resting: hard reset and hot
reset. This is controlled by return to zero.

The hard reset will reset the neuron membrane potential to 0 when there is a spike fires
out:

For a instance, setting the neurons of core 0

samna_config.cnn_layers[0].return_to_zero = True

The soft reset will instead subtract the membrane potential by 1 x pre-defined neuron

Make Intelligence Smarter

www.synsense.ai support@synsense.ai33

firing threshold.
For a instance, setting the neurons of core 0

samna_config.cnn_layers[0].return_to_zero = False

Note: Due to the asynchronous feature of neuron operation, the spiking neuron
calculation is only triggered by once when a incoming spike arrives. This means if the
membrane potential exceeds 2 x pre-defined threshold, the neuron will still fire only
once. When soft reset applied, the neuron will still have more than 1 x threshold
membrane potential left and neuron will remain silent until next input spike arrives.

4.2.4.6.3. Upper/Lower Firing Threshold

For hardware implementation of neurons, it is essential to limit the neuron membrane
potential upper/lower limits since the memory cannot go infinity. The upper threshold
acts the same role as the firing threshold where neuron will emit a spike when it exceeds
the threshold. The lower threshold constraints the minimum membrane potential during
the computation. When a negative activation applied, if membrane potential already
stands at threshold_low, the membrane potential will not change. These are controlled
by threshold_high and threshold_low respectively. These two parameter can also be
defined in Sinabs.

To directly modify thresholds through samna configuration:
For a instance, setting threshold for core 0

samna_config.cnn_layers[0].threshold_low = -100

samna_config.cnn_layers[0].threshold_high = 100

Important Notice: There is a known BUG in current generation of SpeckTM that
threshold_low cannot be set equal to 0, Please alternatively choose a nearest value
instead e.g. threshold_low = -1.

4.2.4.7. Leak/Bias Operation

The leak operation of neuron is designed independent of the asynchronous neuron
calculations and it is only driven by a reference clock signal(slow-clock). For each
DYNAPTMCNN layer, it includes a leak generation block which will update all neuron
values in a layer with provided leak values.

If use the bias operation, a calculated slow clk and bias value should be provided where
in the Samna Configuration:

Make Intelligence Smarter

support@synsense.ai www.synsense.ai34

For a instance, setting leak/bias for core 0

samna_config.cnn_layers[0].leak_enable = True

using the internal DVS count based clock

samna_config.cnn_layers[0].leak_internal_slow_clk_enable = True

using external clock

samna_config.cnn_layers[0].leak_internal_slow_clk_enable = False

Set biases

samna_config.cnn_layers[0].biases = [-127] # assuming only one channel

4.2.4.8. Fan-out

For each DYNAPTMCNN layer, same as described for event pre-processing layer in
section 3.2.3.6, it supports up to maximally 2 output destinations. This can be controlled
by destinations.

For instance setting output destination from core 0 to core 1 and core 2

samna_config.cnn_layers[0].destinations[0] = 1

samna_config.cnn_layers[0].destinations[1] = 2

This potentially increase the flexibility of network structure where user can configure
different architecture as is shown in Figure 10.

Figure１１. Diagram of Available Network Structure

4.2.4.9. Monitoring

Same as described in 3.2.3.7, the output event signal from each DYNAPTMCNN layer
can be monitored via the asynchronous interface together with host machine software
samna. To enable the monitor of a single DYNAPTMCNN layer:

Make Intelligence Smarter

www.synsense.ai support@synsense.ai35

For instance setting monitor enable for core 0

samna_config.cnn_layers[0].monitor_enable = True

4.2.5 Readout Layer (Post Processing)
Hint: If user do not intend to build a hardware system that directly make use the
interrupt signal with SpeckTM, it is not suggested to use the readout layer for on-chip
post-processing. For a hands on tutorial for readout layer usage please check section
5.8.

The main use of the post-processing block is to calculate the moving average over a
time window for a maximum of 15 neurons, provide the maximum average of the 15
neurons and compare the value of the calculated moving averages against a specified
threshold. 5 pins of SpeckTM are dedicated to the direct readout of the class of maximum
activity, these pins (INTERRUPT and READOUT1 to 4) (check block diagram in section
2.1) are designed to provide a direct readout of the maximum spiking class (with or
without activity threshold). The readout pins are typically used when communication with
an external computation platform such as MCU/FPGA etc.

4.2.5.1. INTERRUPT Pins

This pin outputs 0 until the class of max activity exceeds the threshold. Alternatively, the
threshold comparison can be overridden by setting override_threshold_max to True. In
this case, INTERRUPT becomes 1 at every falling edge of the slow-clk.

The INTERRUPT pin is raised at the falling edge of the slow-clk only if
override_threshold_max is True or the max class activity is again above the selected
threshold.

4.2.5.2. Readout Pins

There are 4 readout pins. READOUTx pins reflect the index of the class of max activity
as described in Data Output Modes. These pins are activated in two cases:

A class has spiked more than the set threshold during the previous readout clock

period (INTERRUPT is also raised when this condition is met).

The override_threshold_max is set to True (override threshold).

https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html
https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html
https://synsense-sys-int.gitlab.io/samna/reference/speck2e/configuration/index.html
https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html#samna.speck2f.configuration.ReadoutConfig.override_threshold_max

Make Intelligence Smarter

support@synsense.ai www.synsense.ai36

The 4 bits reflect the binary value of the most recent spiking class. As such, in an
application requiring only 4 classes, the CNN can be configured such that the four
output classes are encoded as class 1, 2, 4 and 8 when arriving at the readout layer. In
this condition, the 4 output pins READOUTx will each directly reflect one of the classes
of interest, and no decoder will be needed to interpret the chip output.

4.2.5.3. Readout Pin Monitoring

The readout layer in SpeckTM is the post-processing layer, the output results are
readable through the 4 readout pins if an interrupt happens if configured correctly.

The readout pin monitoring feature can be enabled via samna. To enable the readout
layer, the samna.speck2f.configuration.ReadoutConfig.enable needs to be set to True
first. To forward your model’s last layer to the readout layer, you need to set its
destination to 12.

The samna.speck2f.configuration.ReadoutConfig.readout_configuration_sel needs to
be set according to your model. There are 4 different addressing modes that could be
selected:

Table 5: Readout Pin Mode Settings

Value Mode

0 2x*2y*4f

1 2x*4y*2f

2 4x*4y*1f

3 1x*1y*16f

And set the samna.speck2f.configuration.ReadoutConfig.threshold of the readout layer
according to your model. The moving average of the output neurons is compared to the
threshold value to produce an output if the received number of spikes is greater than the
threshold.

The SpeckTM readout layer also provides a low pass filter. There are two selectable time
windows, 16 (16 * slow clk period) and 32 (32 * slow clock period), which can be chosen

https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html
https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html
https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html#samna.speck2f.configuration.ReadoutConfig.threshold

Make Intelligence Smarter

www.synsense.ai support@synsense.ai37

by samna.speck2f.configuration.ReadoutConfig.low_pass_filter32_not16.

The default value is False, which is 16 * slow clock period. The low pass filter is enabled
by default, if you don’t want to use it, please set:
samna.speck2f.configuration.Readout-Config.low_pass_filter_disable to True.

Then we set samna.speck2f.configuration.ReadoutConfig.readout_pin_monitor_enable
to True in order to monitor the 4 readout pins.

If there is a valid result, an interrupt is generated by the chip and a
samna.speck2f.event.ReadoutPinValue event is sent to Samna.

The samna.speck2f.event.ReadoutPinValue contains 2 members, an index, indicating
the feature, and a timestamp in microsecond, indicating when this event happened.

4.2.5.4. Readout Time Window

The time window where the moving average is calculated is configurable according to
the clock provided by external slow-clock, and can have time window of 1, 16 and 32
times the provided clock rate. The output data from the readout block can be extracted
by using different configuration modes. Moreover, some timing characteristics of the
block and the addressing mode of the neurons are configured.

4.2.5.5. Data Output Modes

The ReadoutValue is generated at every slow-clock cycle, it has an attribute named
“value” which is a 21 bits data, as is shown in Table 6, it could have different meaning

Table 6: Readout Mode Selection Settings

output_mode_sel bit[20] bit[19:16] bit[15:0]

0 data valid neuron index of max power down (clock gating)

1 data valid neuron index of max threshold compare output

2 data valid neuron index of max average output of the selected neuron

3 data valid neuron index of max average output of max spiking neuron

https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html#samna.speck2f.configuration.ReadoutConfig.low_pass_filter32_not16
https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html#samna.speck2f.configuration.ReadoutConfig.low_pass_filter_disable
https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html#samna.speck2f.configuration.ReadoutConfig.readout_pin_monitor_enable
https://synsense-sys-int.gitlab.io/samna/reference/speck2f/event/index.html#samna.speck2f.event.ReadoutPinValue
https://synsense-sys-int.gitlab.io/samna/reference/speck2f/event/index.html#samna.speck2f.event.ReadoutPinValue

Make Intelligence Smarter

support@synsense.ai www.synsense.ai38

 if output_mode_sel is set to 0, the data_out is equal to 0.
 if output_mode_sel is set to 1, data_out[15:0] consists of the data of the threshold

comparison, the index of the maximum moving average neuron and the data valid
signal. The threshold comparison data is the 16 bit value of the comparison of each
neurons moving average with the threshold.

 if output_mode_sel is set to 2, data_out[15:0] consists of the moving average of the
selected neuron, the index of the maximum moving average and the data valid
signal. The data valid signal is asserted after all the computations have finished in
order to ensure correct sampling of the data.

 if output_mode_sel is set to 3, data_out[15:0] consists of the maximum average of
the 16 neurons, the index of the maximum moving average neuron and the
comparison output between the maximum moving average and the threshold.

4.2.6 Slow Clock
The slow-clock is internally used/externally provided to SpeckTM to operate a number of
features.

4.2.6.1. Clock Speed

In a typical application, the slow-clock toggles at a speed of around 10Hz to 10kHz, the
frequency depends on the internal use of the clock and on the specific application.

4.2.6.2. Usage

The slow-clock unifies three timing sources used by different functional blocks

 Leak/Bias Clock (section 3.2.4.7): Each DYNAPTMCNN layer including a leak
circuitry receive the slow-clk to trigger a leak operation at every clock cycle.

 DVS Filter Block (section 3.2.3.5): The DVS event filters use the slow-clock to
provide the timing reference and update the internal states.

 Readout Block (section 3.2.5): The readout layer uses the slow-clock as the timing
reference for moving-average clock to time the calculation of output class moving
averages.

Important Notice: The three function block are sharing the same slow-clock source.

Make Intelligence Smarter

www.synsense.ai support@synsense.ai39

4.2.6.3. Generation

The slow-clock can be provided upon the development-kit in two ways

4.2.6.3.1. Generate by dividing the internal DVS raw event rate

The internally generated clock exploits the random continuous generation of internal
DVS events (The actual generation frequency is fluctuate with the scene). In other word,
each clock cycle is generated based on the number of DVS event.
The available counting range is [214, 217], the actual internal_slow_clk_divider available
range is [14, 17]
To set this value:

using internal slow-clk and set the clock counter to 2
17
DVS events.

samna_config.factory_config.internal_slow_clk_divider = 17

4.2.6.3.2. Provide by external clock source

On SpeckTM development kit, A FPGA is used to provide a stable, programmable
slow-clk signal to SpeckTM. This external clock source is fully independent to the
operating of the chip and can be configured via samna.

get the development kit object

devkit = samna.device.open_device("Speck2fModuleDevKit")

get the io module

devkit_io = devkit.get_io_module()

enable the slow-clock

devkit_io.set_slow_clock(True)

set the slow-clock frequency to 1000Hz

devkit_io.set_slow_clk_rate(1000)

Make Intelligence Smarter

support@synsense.ai www.synsense.ai40

4.2.6.4. On Board Power Monitoring

The SpeckTM development kit has the built-in on board power monitor for five power
traces of the chip. These are listed out as Table 7:

Table 7: Power Trace of SpeckTM

Power Trace Channel Description

VDD_IO 0 Power of IO interface

VDD_RAM 1 Power of RAM r/w

VDD_LOGIC 2 Power of logic operation

VDD_PIXEL_DIGITAL 3 DVS pixel power from digital circuits

For a simple start up power measurement:
1. import samna

2. import time

3.
4. d = samna.device.get_unopened_devices()

5. dk = samna.device.open_device(d[0])

6.
7. power = dk.get_power_monitor()

8. buf = samna.BasicSinkNode_unifirm_ modules_events_monitor()

9. graph = samna.graph.EventFilterGraph()

10.graph.sequential([power.get_source_node(), buf])
11.
12.print(”Manual power monitor test:”)
13.power.single_shot_power_monitor()
14. time.sleep(1)
15.ps = buf.get_events()

16. [print(p) for p in ps]

17. time.sleep(2)
18.
19.print(”Auto power monitor test:”)

20.# set freq to 1 Hz. The maximum power monitor rate is 100 Hz

21.power.start_auto_power_monitor(1.0)
22. time.sleep(5)
23.power.stop_auto_power_monitor()
24.ps = buf.get_events()

25. [print(p) for p in ps]

Note: The on board power monitor has about ± 50uW offset on each power trace. Max
sampling rate 100Hz.

Make Intelligence Smarter

www.synsense.ai support@synsense.ai41

4.3. Connecting External DVS Resource

Figure１２. Diagram Illustration of Connecting External DVS

As is shown in Figure 11, It is possible to connect an external DVS camera to the board
via host machine, more info can be found at

Send events from a DVS to a dev kit using a graph.

https://synsense-sys-int.gitlab.io/samna/devkits/speckSeries/examples/display_speck2f_dvs.html

Make Intelligence Smarter

support@synsense.ai www.synsense.ai42

5. Software Tool Chain
SynSense provides Tonic, Sinabs and Samna to help development on the SpeckTM

Development Kit.

5.1. Tonic
Tonic provides publicly available event-based vision and audio datasets and event
transformations. The package is fully compatible with PyTorch Vision/Audio to give you
the flexibility that you need. It caters to both the event-based world that works directly
with events or time surfaces as well as to more conventional frameworks which might
convert events into dense representations in one way or another.

It also provides a number of neuromorphic datasets that allows user can obtain the
pre-processed data with one line of the code. Such as DVS Gesture dataset for
classification tasks, MVSEC for optical flow datasets, SHD dataset for audio
classification tasks.

5.2. Sinabs
Sinabs is a Python library for development and implementation of Spiking Convolutional
Neural Networks (SCNNs). The library implements several layers that are spiking
equivalents of CNN layers. In addition it provides support to import CNN models
implemented in torch conveniently to test their spiking equivalent implementation.

An SNN model developed in Sinabs can be easily deployed onto the SpeckTM

development kit with the host machine software Samna.

Sinabs-dynapcnn is the Plug-in site-package based on Sinabs that support user can
create hardware compatible neural networks for SpeckTM and DYNAPTMCNN chip series.
It wraps a number of samna configuration APIs and helps user can do the chip network
deployment with few lines of code.

5.3. Samna
Samna is the developer interface to the SynSense tool chain and run-time environment
for interacting with all SynSense devices. Developed towards efficiency and user
friendly, a set of Python API is available with the core running in C++, it is possible to
work with neuromorphic devices in a professional and elegant manner. Samna also

https://tonic.readthedocs.io/en/latest/index.html
https://sinabs.ai/
https://synsense-sys-int.gitlab.io/samna/

Make Intelligence Smarter

www.synsense.ai support@synsense.ai43

features an event based stream filter system allows real-time, multi-branch processing
of the event based stream coming in or out from the device. With an integration of a
just-in-time compiler in Samna, the flexibility of this filter system has been taken to an
even higher dimension, which supports adding users defined filter functions at run-time
to meet requirements of any different scenarios.

For more examples please refer to Samna Official Documentation.

To efficiently use the SpeckTMDevelopment Kit, it is essential to use the samna graph to
build a route that can communicate with dev-kit. The following links provide few instance
that assist the user to start with:

How Tos
https://synsense-sys-int.gitlab.io/samna/howto.html
Device Controller:
https://synsense.gitlab.io/sinabs-dynapcnn/faqs/device_management.html
Visualization of the DVS:
https://synsense-sys-int.gitlab.io/samna/devkits/speckSeries/examples/display_speck2f
_dvs.html
Measurement of Power :
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/power_monitorin
g.html
Speck Event API List :
https://synsense-sys-int.gitlab.io/samna/reference/speck2f/event/index.htmlx
Speck Configuration API List :
https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html

https://synsense-sys-int.gitlab.io/samna/devkits/speckSeries/summary.html
https://synsense-sys-int.gitlab.io/samna/howto.html
https://synsense.gitlab.io/sinabs-dynapcnn/faqs/device_management.html
https://synsense-sys-int.gitlab.io/samna/devkits/speckSeries/examples/display_speck2f_dvs.html
https://synsense-sys-int.gitlab.io/samna/devkits/speckSeries/examples/display_speck2f_dvs.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/power_monitoring.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/power_monitoring.html
https://synsense-sys-int.gitlab.io/samna/reference/speck2f/event/index.html
https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html

Make Intelligence Smarter

support@synsense.ai www.synsense.ai44

Figure１３. Software Tool Chain for SpeckTM

Make Intelligence Smarter

www.synsense.ai support@synsense.ai45

5.4. DVS tools
DVS tool mainly focusing on provide the user ability to record and label the data using
SpeckTM development kit. The tools is maintained at git repository:

https://gitlab.com/synsense/dvs_tool

Note: Recorder and Labeling tool are two software that maintained in different branch,
please download the tools separately from branch instead of clone the entire repository.

5.4.1 DVS Recorder
With Python terminal:

pip install -r requirements.txt

python run.py

1. Start to record Click the Record menu and click record, then choose a device(if there
are many devices)

Figure１４. Set path for DVS recorder

2. Set storage path and filename as is shown in Figure 13.

https://gitlab.com/synsense/dvs_tool

Make Intelligence Smarter

support@synsense.ai www.synsense.ai46

3. Start and stop recording, with the adjustment of record timing and countdown as
shown in Figure 14.

Figure１５. DVS tool record and settings

5.4.2 DVS Labeling Tool
With Python terminal:

pip install -r requirements.txt

python run.py

1. Click the File menu then choose a data file (*bin), as shown in Figure 15.

Figure１６. DVS tool open bin file

2. Choose slicing method to set framing visualization performance(Figure 16).

Make Intelligence Smarter

www.synsense.ai support@synsense.ai47

Figure１７. DVS tool slicing setting

3. Drag the progress bar or click the play button to visualize the data(Figure 17).

Figure１８. DVS tool visualization

4. Click insert to add info of segmentation(Figure 18) and double click label visualize the
labeled data(Figure 19).

Make Intelligence Smarter

support@synsense.ai www.synsense.ai48

Figure１９. DVS tool add label

Figure２０. DVS tool visualize the labeled data

Make Intelligence Smarter

www.synsense.ai support@synsense.ai49

6. Technical Support
For a more detailed explanation of the reading principle and method for the SpeckTM

chip output, as well as instructions for configuring and utilizing the on-chip CNN and
other resources, please visit SynSense's publicly available materials on:

GITLAB:
https://gitlab.com/synsense
GITHUB:
https://github.com/synsense

Tonic Documentation:
https://tonic.readthedocs.io/en/latest/?badge=latest
Git Repository:
https://github.com/neuromorphs/tonic

Sinabs Documentation:
https://sinabs.ai/
Git Repository:
https://github.com/synsense/sinabs

Sinabs-dynapcnn Documentation:
https://synsense.gitlab.io/sinabs-dynapcnn/

Samna Documentation:
https://synsense-sys-int.gitlab.io/samna/

For further inquiries please visit:
https://www.synsense.ai/contact/

https://gitlab.com/synsense
https://tonic.readthedocs.io/en/latest/?badge=latest
https://github.com/neuromorphs/tonic
https://sinabs.ai/
https://github.com/synsense/sinabs
https://synsense.gitlab.io/sinabs-dynapcnn/
https://synsense-sys-int.gitlab.io/samna/
https://www.synsense.ai/contact/

Make Intelligence Smarter

support@synsense.ai www.synsense.ai50

7. Change log

No. Version Date Editor Changes

1 V0.1 2023.04 SI Initial Version

2 V1.0 2023.08 AL 1st Version

3 V1.1 2024.11 Dylan Added getting started part

Make Intelligence SmarterMake Intelligence SmarterMake Intelligence Smarter

© SynSense – All rights reserved

	Content
	1. Introduction
	1.1. SpeckTM Chip
	1.2. SpeckTM Development Kit

	2. SpeckTM
	2.1. Block Diagram
	2.2. Key Features
	2.3. Event Pre-processing Layer
	2.4. DYNAPTMCNN Computational Layers
	2.5. Readout Layer

	3. Getting Started Guide
	3.1. Create a python environment
	3.2. Install requirements and dependencies
	3.3. Connect to the Speck dev kit
	3.4. Visualise the Speck sensor output
	3.5. Record and display some data from the Speck sensor
	3.6. Create and deploy a model to Speck
	3.7. Next steps
	3.8. Detailed tutorials
	3.8.1 Enable Linear Leak Feature
	3.8.2 Event Pre-processing Layer
	3.8.3 Spike Count Visualization
	3.8.4 Power Monitor
	3.8.5 DYNAPTMCNN Visualizer
	3.8.6 Using Readout Layer
	3.8.7 Constraints - Available Network Architecture
	3.8.8 Constraints - Available Operations
	3.8.9 Chip Output Monitoring

	4. SpeckTM Development Kit
	4.1. Mechanical Specification
	4.2. Development Data Sheet
	4.2.1 Preliminary Software
	4.2.2 Samna Configuration
	4.2.3 Event Pre-processing Layer
	4.2.3.1.On/Off/Both/Merge Switching
	4.2.3.2.Pooling
	4.2.3.3.ROI selection
	4.2.3.4.Mirror Operation
	4.2.3.5.DVS Event Filter
	4.2.3.5.1. DVS Filter(Noise Filter)
	4.2.3.5.2.Low Pass(Flicker Filter)
	4.2.3.5.3. DVS filter + Hot Pixel Filter
	4.2.3.5.4.Explanation of filter mode conflicts and slow-cloc

	4.2.3.6.Fan-out
	4.2.3.7.Monitoring
	4.2.3.8.Disable the Event Pre-processing Layer

	4.2.4 DYNAPCNN Layers
	4.2.4.1.Memory Capacity and Resolution of DYNAPCNN Layers
	4.2.4.2.Congestion Balancer in DYNAPCNN Layers
	4.2.4.3.Spike Decimator
	4.2.4.4.Convolution and Spiking Neuron Operation
	4.2.4.5.Network Embedding
	4.2.4.6.Neuron Dynamics
	4.2.4.6.1.Neuron Initial State
	4.2.4.6.2.Membrane Reset Mechanism
	4.2.4.6.3.Upper/Lower Firing Threshold

	4.2.4.7.Leak/Bias Operation
	4.2.4.8.Fan-out
	4.2.4.9.Monitoring

	4.2.5 Readout Layer (Post Processing)
	4.2.5.1.INTERRUPT Pins
	4.2.5.2.Readout Pins
	4.2.5.3.Readout Pin Monitoring
	4.2.5.4.Readout Time Window
	4.2.5.5.Data Output Modes

	4.2.6 Slow Clock
	4.2.6.1.Clock Speed
	4.2.6.2.Usage
	4.2.6.3.Generation
	4.2.6.3.1.Generate by dividing the internal DVS raw event ra
	4.2.6.3.2.Provide by external clock source

	4.2.6.4.On Board Power Monitoring

	4.3. Connecting External DVS Resource

	5. Software Tool Chain
	5.1. Tonic
	5.2. Sinabs
	5.3. Samna
	5.4. DVS tools
	5.4.1 DVS Recorder
	5.4.2 DVS Labeling Tool

	6. Technical Support
	7. Change log

