

The information contained herein is for informational purposes only,
and is subject to change without notice.

Intellectual Property Rights

SynSense owns the copyrights, trademarks and other intellectual property rights and interests in
this document. The fact that SynSense provides this document to you does not affect the rights and
interests of SynSense as described above.

Brand and product names are trademarks or registered trademarks of their respective owners.

No license, including implied or arising by estoppel, to any intellectual property rights is granted by
this document.

No Warranty

While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and SynSense is under no obligation to update or
otherwise correct this information. SynSense makes no representations or warranties with respect
to the accuracy or completeness of the contents of this document, and assumes no liability of any
kind, including the implied warranties of noninfringement, merchantability or fitness for particular
purposes, with respect to the operation or use of SynSense hardware, software or other products
described herein.

Disclaimer

To the extent permitted by applicable law, SenSense shall not be liable for any direct, indirect,
incidental, special, incidental or other damages, costs, liabilities or claims of any kind arising out of
or in connection with the use of this document,with respect to the operation or use of SynSense
hardware, software or other products described herein.

Applicable Terms and Conditions for Products
Terms and limitations applicable to the purchase or use of SynSense’s products are as set forth in a
signed agreement between you and SynSense or in SynSensels Standard Terms and Conditions.

© SynSense — All rights reserved

Make |ntelligence Smarter SynSense

Content
1. INErodUCHION ... 1
I S o = o L 04 o 1« PPt 1
1.2. Speck™ Development Kitooommmmiiiiiiiiiiiiirrccrrre e 1
2. £ o 1= o3 QL 2
21 [=] e T2 [Ql I T - T [- T 1
2.2, Key Featurescccooreeiiiiiiiciiiiirieese s s s s s s s s s s smms s s e nnnms s e e e nmmnnnnnes 2
2.3. Event Pre-processing Layercccccceiriiiiiiimiiiiiiiiiiiisssssss s 2
24. DYNAP™CNN Computational Layerscccccooriiiiiiiinmmmnnnemmeeeeeeeeeeneeees 3
2.5. Readout Layercccccciiiiiiiiiiiiiiii e 3
3. Getting Started Guide ... ————— 4
3.1. Create a python environmentcoooiiiiiiiciiiiiii e e e 4
3.2. Install requirements and dependenciescccooiiiiiiiiiciceiiinnieeneeeeeees 4
3.3. Connect to the Speck dev Kitccooormmmiimiiiciiiiiii e 4
3.4. Visualise the Speck sensoroutputccooorriiiiiiiiiiiiicccce e 5
3.5. Record and display some data from the Speck sensor, in Python 7
3.6. Create and deploy a model to SpeckKoooimmmmiciiiiiiiiireeeeeee e 9
3.7, NeXt StePS ..ooiiiiiiiicci e 1
3.8. Detailed tutorialscccooiiiimiiiii 1
3.8.1 Enable Linear Leak Featurecccccmmriiiiiiiniiiiieeeeecce 11
3.8.2 Event Pre-processing Layercccomiiimmmmiinmmmmnnnee s 11
3.8.3 Spike Count Visualizationccccooviimmmmimimmmninnccccseeeeeees 11
3.8.4 Power Monitor ... e 12
3.8.5 DYNAP™CNN Visualizerccooiiiiiiiiiii e 12
3.8.6 Using Readout Layerccccoiiimimmmmmmmemmemeeennennnnnnnnnnnnnnssnes 12
3.8.7 Constraints - Available Network Architecture.............................. 12
3.8.8 Constraints - Available Operationsc...coorverciiciccccccccccce, 12
3.8.9 Chip Output MONItoringccceermmmmmmmmmmmmmiiiiiiiee e 12
4. Speck™ Development Kit ... e 13
4.1. Mechanical Specificationccccccciiiiiiiiiiiiii 13
4.2. Development Data Sheetoooeiiiiiiiiiiiiiccecccs e 16
421 Preliminary Software ... 17
4.2.2 Samna Configurationccccccoeeiimiiiiiiiiiiiiiie e 17
4.2.3 Event Pre-processing Layercccovimmmmmmiiiiininiciisenene e 18
4.2.3.1. On/Off/Both/Merge Switchingcccccciiiiiiiiiniiiiciieece 19
www.synsense.ai support@synsense.ai

https://www.synsense.ai

SynSense Make Intelligence Smarter

T 3720 0y o o Yo 1 4 ' 19
4.2.3.3. ROI selectioncccooiiiiiiimiiiieieciiee s 19
4.2.3.4. Mirror Operationccoeciiiiiiiiiccccccsneeeree e e e 20
4.2.3.5. DVS Event Filter ... 21
4.2.3.5.1. DVS Filter(Noise Filter)cccoeeciiiimmmrriieecccccnes 21
4.2.3.5.2. Low Pass(Flicker Filter)cccccooovimiiiiiiiinniiiceeee, 22
4.2.3.5.3. DVS filter + Hot Pixel Filtercccccoveeeerriiiiiiinnnnnns 23
4.2.3.5.4. Explanation of filter mode conflicts and slow-clock 23
4.2.3.6. FaN-0ULoooiiiiei e 23
L N R 1" o 4 T] 1 T 24
4.2.3.8. Disable the Event Pre-processing Layercccccecvmnirrnnnne 24
424 DYNAPCNN Layersccccoeiiiiiiiiiiiiiiiss e 25
4.2.4.1. Memory Capacity and Resolution of DYNAPCNN Layers 26
4.2.4.2. Congestion Balancer in DYNAPCNN Layersccccceernneee 29
4.2.4.3. Spike Decimatorcccoooiiiiiiimiiie e 29
4.2.4.4. Convolution and Spiking Neuron Operation 30
4.2.4.5. Network Embeddingccoomrmmiiiimiiccccrsss e 31
4.2.4.6. Neuron DYyNamicCscccciiiiiininnnnnnisssesse e 32
4.2.4.6.1. Neuron Initial Statecooorrmri, 32
4.2.4.6.2. Membrane Reset Mechanismccccovcmrrnirrnnnn. 32
4.2.4.6.3. Upper/Lower Firing Thresholdccccccriiiiiiiiinnnes 33
4.2.4.7. Leak/Bias Operationccccccceiiiiiiiimmmmiinniiiisccsseees e 33
4.2.4.8. FaAN-0UL ..o e 34
4.2.4.9. MONItOIING ...coenniiiiieiiiircr e 34
4.2.5 Readout Layer (Post Processing)ccccoevviiiiiiiimmiiinicccnniinnes 35
4.2.51. INTERRUPT PiNScoomeiiieiiccecre s scccssee s ssne e s sssmna e 35
4.2.5.2. Readout Pinsccoiiiiiiiiiiiiiirrr s 35
4.2.5.3. Readout Pin Monitoringcceeeciiiiiiiiiiiiiiiiieeceese s eseseennnees 36
4.2.5.4. Readout Time Window ... 37
4.2.5.5. Data Output Modescccooimiriiiccrrr e 37
4.2.6 SIOW CIOCK ...coemeeeiiiiiiiiiiiriiiisees s s s e s e s smmmnn e e e s s s nnas 38
4.2.6.1. Clock Speedccooiiiiiiiiieieeiccee e e 38
4.2.6.2. USQQEccemmeniiiiecmniiiirncnnsserennnssss e e s emnmnmnnsnsnsnssnssssssssssssssssnsssnsnnn 38
4.2.6.3. Generationcoooiiiiiiiiiiiiiiiiie e 39

4.2.6.3.1. Generate by dividing the internal DVS raw event rate

39

support@synsense.ai www.synsense.ai

mailto:fae@synsense.ai
https://www.synsense.ai

Make |ntelligence Smarter SynSense

4.2.6.3.2. Provide by external clock sourcecccccccuuunnnnnnnen 39

4.2.6.4. On Board Power Monitoringccoeveemmmmmimiieicscccccsneceeeeenn. 40

4.3. Connecting External DVS Resource..........cccccccviiiiiiiiiinncnccssses e 41

5. Software Tool Chain ..o 42

£ 0t [I o | o 42

5.2, SINADS ... s 42

£ TR - T 1] - S 42

5.4, DVS OOIS ... 45

541 DVS Recorder.........oooiiiiiiiiiiiiiiiiiicciccceeeie i 45

5.4.2 DVS Labeling TOOIccooviiiiiiiiiiiiiiiiieiee s 46

6. Technical SUPPOIto 49
7. L0 T- T T =T Lo Y o SRR 50
www.synsense.ai support@synsense.ai

®

https://www.synsense.ai

Syn Sense Make Intelligence Smarter

List of Figures

Figure 1 : Speckm Development Kit; ..o e 1
Figure 2 : Top Level Chip Diagramccccccvvmmeinnnismnsinssss s ssssanes 2
Figure 3 : Speckrm Development Kit Front View ... 13
Figure 4 : Speckrn Development Kit Back Viewcccccccmmmiiiiiiiiiccssseennnnnnnnnn, 14
Figure 5 : Explanation of Samna Configurationcccccciiiiimiiniccisnennicenn, 16
Figure 6 : Computation Pipeline of Event Pre-processing Layer 19
Figure 7 : Indication of ROI Selection Exampleccccoeviriniinnnniinincensnncaeens 20
Figure 8 : DYNAPCNN layer Data Flow Pipelineccccoooooemrricccceeeeescceee 25
Figure 9 : Explanation of Asynchronous Convolution and Spiking Activation
(0= -1 o] o 1= 31
Figure 10 : Diagram of Available Network Structurecccccceeveicciccceeeeenennnnn, 34
Figure 11 : Diagram lllustration of Connecting External DVS 41
Figure 12 : Software Tool Chain for SPeCKMcccemriiiiicccccceeereee s 44
Figure 13 : Set path for DVS recordermmicccemernncsseeer e sssssmeeeeeas 45
Figure 14 : DVS tool record and settingscccccivvrmmriinniinmssnnsssesn e 46
Figure 15 : DVS tool open bin file ... 46
Figure 16 : DVS tool slicing settingccccocvvmmmiiniiimmiincnn e 47
Figure 17 : DVS tool visualizationcccccvvmmiiniiimnnneee e 47
Figure 18 : DVS tool add label ... 48
Figure 19 : DVS tool visualize the labeled data...........ccccceiriimriiiiiicnie, 48
Figure 20 : The visualiser window,showing a live feed from the Speck™
E=T = - o 48
support@synsense.ai www.synsense.ai

mailto:fae@synsense.ai
https://www.synsense.ai

Make Intelligence Smarter Synsense
List of Tables

Table 1 : DYNAPtCNN Memory Distributionccccocmiiiiiimniinccese e 26
Table 2 : DVS Event Filter Block Memory Capacityccccceeeeererrrncsmrerssssnnees 26
Table 3 : Available Parameter Resolutionccccciivmmminiiniccccscsseeeeneennenns 27
Table 4 : Spike Decimator Settingsccceuuceciiiiiiiii e 30
Table 5 : Readout Pin Mode Settings ... 36
Table 6 : Readout Mode Selection Settingsccccccceiimrrriiie e, 37
Table 7 : Power Trace of SPeCKTMccciiiiiiiieiccccccr e 40
www.synsense.ai support@synsense.ai
° ®

https://www.synsense.ai

Make Intelligence Smarter SynSense

1. Introduction

1.1. Speck™ Chip

Speck™ is a "sensor-compute integrated" neuromorphic intelligent dynamic vision
System on Chip(SoC), integrating an asynchronous neuromorphic dynamic vision
processor (DYNAP™CNN) and a Dynamic Vision Sensor (DVS), also known as an

Event Camera. It features a large-scale Spiking Convolutional Neural Network (sSCNN)
chip architecture based on an asynchronous logic paradigm, configurable with up to
320K spiking neurons.

Speck™ is designed for always-on loT devices and applications such as, human
behavior recognition, gesture recognition, facial detection, and surveillance, with
ultra-low power consumption and ultra-low latency.

1.2. Speck™ Development Kit

As is shown in Figure 1, Speck™ Development Kit(Dev Kit) is powered by the Speck™
chip, which provides a computational platform for user to interact with Speck™ via a
host machine and software Samna. With the CQFP80 packaged Speck™ chip, user can
mount lens based on expected vision field (the dev kit comes with 1.7mm and 3.6mm
M12-Mount lens). With the vision module packaging, it comes with a built-in 1.98mm
lens.

Figure 1 . Speck™ Development Kit; Left: CQFP Packaging; Right: Camera Module Packaging

www.synsense.ai 1 support@synsense.ai

https://www.synsense.ai

Syn Sense Make Intelligence Smarter

2. Speck™

2.1. Block Diagram

Figure 2 illustrates the top level block diagram of the Speck™. Between these blocks,
only Address Event Representation(AER) communication protocol is used for data
transmission. The internal DVS provides the sensory data inputs to event
pre-processing and filter function block. The output interface, input interface and main
computing resource(DYNAP™CNN cores) are sharing a same event router.

READOUT1
Event - i I P2S_DREADY
Interal DVS Pre- L - READOUT3 Output [__ Zi‘ﬁi
Internal events - Readout [reanouta As -
B ——— >processing Core L INTERRUPT Y-
- Class selection Interface
Filter e

Sensor conf Ext. DVS Events from Event monitor
events output layer (datal)

Event Router

@ Ext. DVS @ @ @
events

szp_pata ——| INPUL
S2P_DREADY ——» ASYNC DYNAP-CNN | [DYNAP-CNN DYNAP-CNN

S2P_CREADY <4— Interface Core 0 Corel Core 8

Figure 2 . Top Level Chip Diagram

2.2. Key Features
.1 Built-in DVS event pre-processing layer
.9 DYNAP™CNN computational layers
.1 Readout layer

.128x128 DVS pixel array, dynamic range not less than 80 dB (20-200k lux)

Note: When DVS is used between 20lux to 50lux, there is a slight decrease pf the
sensitivity of the optical sensor array.

2.3. Event Pre-processing Layer
. Noise filtering
. DVS polarity adjustment
. ROl selection
.Mirroring in both X/Y

.Rotate in 90-degree steps

support@synsense.ai 2 www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

2.4. DYNAP™CNN Computational Layers

.Up to 9 DYNAP™CNN layers
.Max input dimension 128*128

. Max feature output size 64*64

.Max feature number 1024

.Weight resolution 8 bits

.Neuron state resolution 16 bits

.Max kernel size 16*16

.Stride {1,2,4,8} independent in X/Y
.Padding [0..7] independent in X/Y
.Pooling 1: 1, 1:2, 1:4

.Fan-out of 2

.Linear Leak operation on each layer
. Spike count decimator on each layer
. Spike congestion balancer on each layer

. Parallel computing on layer 0 and layer 1, enabling larger throughput, can be used
as input layers

2.5. Readout Layer

.15 classes and 1 idle class
.Configurable moving average between [1, 16, 32] time steps
.4 readout modes: inactive/threshold/max spiking class/specific class

.4 readout pins and 1 interrupt pin

www.synsense.ai 3 support@synsense.ai

https://www.synsense.ai

Syn Sense Make Intelligence Smarter

3. Getting Started Guide

3.1. Create a python environment

The Python-based tools for Speck development require a Python version between 3.8
and 3.12 inclusive. We recommend to use a python environment management utility
such as conda or pyenv.

To create a compatible python environment using conda, use the following command in

a terminal:

conda create --name speck 'python<=3.12'

3.2. Install requirements and dependencies

Development for Speck is performed using the open-source “sinabs” library from
SynSense. To install the library and all required dependencies, use the following
commands in a terminal:

conda activate speck
pip install sinabs

Set up UDEV rules on Linux

To connect with the Speck dev kit on Linux, you need to configure the UDEV rules on
your system. Follow the instructions at the link below:

https://synsense-sys-int.gitlab.io/samna/0.48.0/install.html#udev-rules-on-linux-systems

3.3. Connect to the Speck dev kit

Important: The Speck dev kit requires a USB 3.1 connection to your PC. Make sure you
use a USB3.1 cable (ideally the cable supplied with Speck), and avoid connecting to

Speck through a USB hub. Also ensure that the USB port you use to connect provides
the USB 3.1 standard.
Open Python in your python environment

] conda activate speck

] python

>>> import sinabs.backend.dynapcnn.io as sio
>>> sjo.get_device_map()
{ : device::Devicelnfo(serial_number=, usb_bus_number=1, usb_device_address=1,

logic_version=0, device_type name=Speck2fDevKit)}

support@synsense.ai 4 www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

If you don’t see output similar to the line above:

® |If on linux, did you enable the UDEV rules?

® Are you using a USB3.1 cable and USB3.1 port? Check with Isusb (on Linux) or
System Information on MacOS

3.4. Visualise the Speck sensor output

With these steps you can visualise the output of the Speck vision sensor in real time.
Open python in your python environment, and run the following code block:

import time

import sinabs.backend.dynapcnn.io as sio
devkit = sio.open_device("speck2fdevkit:0")

import samna
samna_graph = samna.graph.EventFilterGraph()
_, _, streamer = samna_graph.sequential(
[
devkit.get_model_source_node(), # Specify the source of events to this graph as the devkit

"Speck2fDvsToVizConverter", # Convert the events to visualizer events

"VizEventStreamer", # Stream events to a visualizer via a streamer node

)
visualizer_port = "tcp://0.0.0.0:40001"

Launch visualizer
gui_process = sio.launch_visualizer(
receiver_endpoint=visualizer_port, disjoint_process=True

)
time.sleep(1.0)

Visualizer configuration branch of the graph.

visualizer_config, _ = samna_graph.sequential(

[samna.BasicSourceNode_ui_event(), streamer] # For generating Ul commands

Connect to the visualizer
streamer. set_streamer_ destination(visualizer_port)
if streamer.wait_for_receiver_count() == 0:

raise Exception(f"Connecting to visualizer on {visualizer_port} fails.")

www.synsense.ai 5 support@synsense.ai

https://www.synsense.ai

Syn Sense Make Intelligence Smarter

Specify which plot is to be shown in the visualizer

plot1 = samna.ui.ActivityPlotConfiguration(

image_width=128, image_height=128, title="DVS Layer", layout=[0, 0, 1, 1]
)
visualizer_config. write([samna. ui. VisualizerConfiguration(plots=[plot1])])
time.sleep(1.0)
samna_graph.start()
time.sleep(1.0)

devkit_config = samna.speck2f.configuration.SpeckConfiguration()

enable monitoring the inputs from the DVS sensor

devkit_config.dvs_layer.raw_monitor_enable = True

Apply this configuration
devkit.get_model().apply_configuration(devkit_config)
print("Press ENTER to terminate...")

input()

Stop the graph

samna_graph.stop()

If we used a sub-process to launch the visualizer, use that to terminate the visualizer.
if gui_process:
gui_process.terminate()

gui_process.join()

support@synsense.ai 6 www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

® @ Visualizer

V DVS Layer

Figure 3 . The visualizer window, showing a live feed from the Speck sensor

3.5. Record and display some data from the Speck sensor,
in Python

This code needs the plotting and visualization library matplotlib. To install this in your
python environment, use the follow commands at the terminal:

conda activate speck
pip install matplotlib

Then open python, and paste the following code block:

import sinabs.backend.dynapcnn.io as sio
import samna

import time

import numpy as np

from typing import List

import matplotlib.pyplot as plt

- Open the Speck devkit device

devkit = sio.open_device("speck2fdevkit:0")

- Get a sink node to read events from the devkit

sink = samna.graph.sink_from(devkit.get_model_source_node())

www.synsense.ai 7 support@synsense.ai

https://www.synsense.ai7
https://www.synsense.ai7

Syn Sense Make Intelligence Smarter

- Configure the Speck devkit to monitor DVS events
Get a Speck 2f configuration, and enable input monitoring
devkit_config = samna.speck2f.configuration.SpeckConfiguration()

devkit_config.dvs_layer.raw_monitor_enable = True

Apply this configuration to the Speck device
devkit.get_model().apply_configuration(devkit_config)

- Enable timestamping on the dev kit
stopwatch = devkit.get_stop_watch()
stopwatch.start()

stopwatch.reset()

- Define function to convert events into a numpy array
def dvs_events_to_numpy(events: List[samna.speck2f.event.DvsEvent]) -> np.ndarray:
return np.array(
[
(ev.x, ev.y, ev.p, ev.timestamp)
for ev in events
if isinstance(ev, samna.speck2f.event.DvsEvent)
1,
dtype = [(', 'u1’), ('Y, 'uT’), (', bool), (', 'u4’)],

Now you can copy/paste and run the following code to accumulate and display events
into frames of 1 second duration. You can repeat this code block as many times as you
like.

- Record events for 1 second
sink.clear_events()
time.sleep(1.)

events = dvs_events_to_numpy(sink.get_events())

- Accumulate events into a frame
frame = np.zeros((128, 128))

np.add.at(frame, (events['x'], events['y']), 1.)
- Show the frame

plt.imshow(frame.T)

plt.show()

support@synsense.ai 8 www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

3.6. Create and deploy a model to Speck

These steps show you how to deploy a simple model to Speck, to run on the dev kit.

import torch

import torch.nn as nn

from typing import List

from sinabs.from_torch import from_model

from sinabs.backend.dynapcnn import DynapcnnNetwork

ann = nn.Sequential(
nn.Conv2d(1, 20, 5, 1, bias=False),
nn.ReLU(),
nn.AvgPool2d(2,2),
nn.Conv2d(20, 32, 5, 1, bias=False),
nn.ReLU(),
nn.AvgPool2d(2,2),
nn.Conv2d(32, 128, 3, 1, bias=False),
nn.ReLU(),
nn.AvgPool2d(2,2),
nn.Flatten(),
nn.Linear(128, 500, bias=False),
nn.ReLU(),
nn.Linear(500, 10, bias=False),

Convert your model to SNN

sinabs_model = from_model(ann, batch_size=1, add_spiking_output=True) # Your sinabs SNN model

Convert your SNN to "DynapcnnNetwork’
hw_model = DynapcnnNetwork(

sinabs_model.spiking_model,
discretize=True,
input_shape=(1, 28, 28)

)

Deploy model to a dev-kit

hw_model.to(device="speck2fdevkit:0")

The Python terminal should show this output:
Out[6]:
DynapcnnNetwork(

(sequence): Sequential(

www.synsense.ai 9 support@synsense.ai

https://www.synsense.ai

Syn Sense Make Intelligence Smarter

(0): DynapcnnLayer(
(conv_layer): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1), bias=False)
(spk_layer): I1AFSqueeze(spike_threshold=Parameter containing:
tensor(636.), min_v_mem=Parameter containing:
tensor(-636.), batch_size=1, num_timesteps=-1)
(pool_layer): SumPool2d(norm_type=1, kernel_size=(2, 2), stride=None, ceil_mode=False)
)
(1): DynapcnnLayer(
(conv_layer): Conv2d(20, 32, kernel_size=(5, 5), stride=(1, 1), bias=False)
(spk_layer): IAFSqueeze(spike_threshold=Parameter containing:
tensor(11364.), min_v_mem=Parameter containing:
tensor(-11364.), batch_size=1, num_timesteps=-1)
(pool_layer): SumPool2d(norm_type=1, kernel_size=(2, 2), stride=None, ceil_mode=False)
)
(2): DynapcnnLayer(
(conv_layer): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), bias=False)
(spk_layer): IAFSqueeze(spike_threshold=Parameter containing:
tensor(8621.), min_v_mem=Parameter containing:
tensor(-8621.), batch_size=1, num_timesteps=-1)
(pool_layer): SumPool2d(norm_type=1, kernel_size=(2, 2), stride=None, ceil_mode=False)
)
(3): DynapcnnLayer(
(conv_layer): Conv2d(128, 500, kernel_size=(1, 1), stride=(1, 1), bias=False)
(spk_layer): IAFSqueeze(spike_threshold=Parameter containing:
tensor(5748.), min_v_mem=Parameter containing:
tensor(-5748.), batch_size=1, num_timesteps=-1)
)
(4): DynapcnnLayer(
(conv_layer): Conv2d(500, 10, kernel_size=(1, 1), stride=(1, 1), bias=False)
(spk_layer): I1AFSqueeze(spike_threshold=Parameter containing:
tensor(2841.), min_v_mem=Parameter containing:

tensor(-2841.), batch_size=1, num_timesteps=-1)

Now you can send some events to Speck to run through your deployed model:
- Format data as required to input to Speck
def x_y_t p_to xytp(x: np.array, y: np.array, t: np.array, p: np.array) -> np.array:
length = np.size(x)
array = np.zeros(length, dtype = [('x', 'u1"), ('y', 'u1’), ('t', 'u4’), ('p', bool)])

array['x'] = np.round(x)

support@synsense.ai 10 www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

array[lyl] = np.round(y)

array[ltl] = np.round(t)
array[lpl] = p.astype(bool)

return array

- Generate some random events

xytp = x_y_t_p_to_xytp(np.random.randint(0, 28, 10), np.random.randint(0, 28, 10), 0., np.array(True))

- Get a chip factory to be able to convert events

cf = sinabs.backend.dynapcnn.chip_factory.ChipFactory(lspeck2fdevkitl)

- Convert random event array to list of Speck events

input_evs = cf.xytp_to_events(xytp, 0, reset_timestamps=True)

- Pass events to model running on Speck

hw_model(input_evs)

3.7. Next steps
® Train a spiking CNN for MNIST:

https://sinabs.readthedocs.io/v3.1.0/tutorials/nmnist.html

® Deploy an MNIST model to Speck for inference:
https://sinabs.readthedocs.io/v3.1.0/tutorials/nir_to_speck.html

3.8. Detailed tutorials

3.8.1 Enable Linear Leak Feature

https://synsense.qgitlab.io/sinabs-dynapcnn/getting started/notebooks/leak neuron.html

3.8.2 Event Pre-processing Layer

https://synsense.qgitlab.io/sinabs-dynapcnn/getting started/notebooks/play with speck
dvs.html

3.8.3 Spike Count Visualization

https://synsense.qgitlab.io/sinabs-dynapcnn/getting started/notebooks/visualize spike ¢

ount.html

www.synsense.ai 11 support@synsense.ai

https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/leak_neuron.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/play_with_speck
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/play_with_speck_dvs.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/visualize_spike_c
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/visualize_spike_count.html
https://www.synsense.ai

SynSense Make Intelligence Smarter

3.8.4 Power Monitor

https://synsense.qgitlab.io/sinabs-dynapcnn/getting started/notebooks/power monitorin
g.html
3.8.5 DYNAP™CNN Visualizer

https://synsense.qgitlab.io/sinabs-dynapcnn/getting started/visualizer.html

3.8.6 Using Readout Layer

https://synsense.qgitlab.io/sinabs-dynapcnn/getting started/notebooks/using readout la
yer.html

3.8.7 Constraints - Available Network Architecture

https://synsense.qgitlab.io/sinabs-dynapcnn/fags/available network arch.html

3.8.8 Constraints - Available Operations

https://synsense.qgitlab.io/sinabs-dynapcnn/fags/available algorithmic operation.html

3.8.9 Chip Output Monitoring

https://synsense.gitlab.io/sinabs-dynapcnn/fags/output monitoring.html

support@synsense.ai 12 www.synsense.ai

https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/power_monitorin
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/power_monitoring.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/visualizer.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/using_readout_la
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/using_readout_layer.html
https://synsense.gitlab.io/sinabs-dynapcnn/faqs/available_network_arch.html
https://synsense.gitlab.io/sinabs-dynapcnn/faqs/available_algorithmic_operation.html
https://synsense.gitlab.io/sinabs-dynapcnn/faqs/output_monitoring.html
https://www.synsense.ai

Make |ntelligence Smarter

SynSense

4.

4.1.

Speck™ Development Kit

Mechanical Specification

< 65. 00 >
r 57.00
II\ - v ¥
‘ E O mlsr‘Eﬂ n-
(] am) O =T
38 /\ .
mo§ '_IElﬂ-[I:HGI
f o 5 R
(o0
B e @ [- ‘“’ﬁ'_'Eﬂ:I |-
83w e~ = we == e EI(e 8
ux:agmmE .5.5 @ m! 'EIE% u2’ :

e Wi 3 I]ECU
meoeEa 588 SynSense ™ §% ue B8
mml:ai:l D Qg

m-D-m mﬁf_]E'ﬂ [I
w7 E3E 3 ey =uUQ =
BR ue’ 55
W e F
3-
[]
o o
o o wo e
SR (-
T -
m . sjejie
'-u[‘lugﬁ
- - - -w:.io
883
e o wm
. g
me
%: g omlw ° mﬁﬁﬁ
g B ® &N -L:”wmﬁﬂ
. :: 853 Bs ® 18 5-5”:@5
L — mEE E§ L 020 g us
CY) @i . 145 B i
ool sy T g D
o0 2 __ g% g8 lnaL' E " E§ gé!g' i
S SR e
= J2| e®® g OE S
Y__‘ EEiEh | i
y N\ asT LLLLL 2

www.synsense.ai

Figure 4 . Speck™ Development Kit Front View

13

support@synsense.ai

https://www.synsense.ai13
https://www.synsense.ai13

SynSense

Make Intelligence Smarter

65. 00

a7 00

o |

A f
| — SDED 8 =
ng3 o SRR TERE Hot
sMEs 58 Y e S -
§ME§I EEI.;_r 8
au >
oD g 0SA & g™ = :E'?EB'-B
::;CJ i mEgeclE R =
G M 85 = WeED | =
e[Es asa[s s 2 O] -
2N amED =
8 mERcPcmenal,
g8 —— o El4 =8
8 2 om
r 1 siis] oo
{0 g HOC il
) 8% i €519 o 1
SS10 ol 12 > eME 3 Es I =
g S0Maspasnesn e oS o -_
oMo SOMESI ISD) e11d 04D a ""'E.‘S'. -g
80161 #E1J SEID IMID SPID EMID 1D §§ wEgﬂ_:_ EFH -
19 201D 19 » Of[ssje = -"KN-"
SI021D SO a3 BeES] | =g
13 seE 3 -
B e
s 9sen Q&?mm e
WEED ey © e
%n G5 wmED
O wn s
) 8 ooy B0 A
o 4 S8 M9 2r
g N S| e ® s)eald
B§ ©21J 8eArd1d ® SJESID
Sessia &u? -1
€1 :ﬁ; - s
e T
-5
EAEaET
TRy
esas 3
He g3
o0 .'5 asm
. . 'ﬂ E 0
O mn.%. 0112 #S8
| X <89 s 3s 3] g9 aSH
oo e .
P 248 ﬁﬁﬁm ~aE] me
o0 quQ:J-G
8SE 3 @ ==
esE 3 (U] (L1/L]]
WET g2 88
—@ &
! L [[&
Figure 5 . Speck™ Development Kit Back View

support@synsense.ai

14

www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

Speck™ SoC

High Precision Power Monitor

FPGA JTAG (RSV)

Flash

USB 3.0 Micro-B Port / Connector
System Reset Button

USB 3.0 Controller CFG Switch (RSV)
System Power LED

© ©® N o o bk w N =

FPGA Configuration Done Indicator
10. USB 3.0 Controller State Indicator
11. Debug State Indicator

12.SoC Power Traces State Indicator
13. FPGA

14. USB 3.0 Controller

www.synsense.ai 15 support@synsense.ai

https://www.synsense.ai

Syn Sense Make Intelligence Smarter

4.2. Development Data Sheet

Pytorch SNN Model /<~ ~onfic \

e Model Layer
Config
bitstream

>
01010111...

10101010...

L Chip Config
Chip Settings

Figure 6 . Explanation of Samna Configuration

This chapter illustrates the detailed function block of Speck™ and how these can be

configured with the development kit and host machine software samna (see section 4.3
for more details).

The chip is typically configured using a bitstream that represents the configuration of

individual registers. For high-level interaction with the chip, samna provides all essential
APIs, eliminating the need for users to be concerned about low-level register addresses
and bitstream generation.

As is shown in Figure 5. The samna configuration profile contains the model layer
config(SCNN architecture and parameters) and the chip config.

For the model layer config, we provide an efficient software tool

sinabs-dynapcnn(section 4.2) that supports converting a sinabs/pytorch model to chip
compatible model. This stage usually contains the translation of pre-trained network to
chip resources mapping and the quantization of network parameters.

Regarding the chip configuration, it is typically intended for advanced users who wish to
implement their customized chip settings. This involves manually modifying neuron
dynamics, connectivity between DYNAP™CNN layers, event-preprocessing layers, and

support@synsense.ai 16 www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

readout layers.

4.2.1 Preliminary Software

The Speck™ Dev Kits build essential resources to support the user interact with
Speck™,

Begin by following the Getting Started guide in section 3.

4.2.2 Samna Configuration

With a pre-trained neural network, the hardware configuration for Speck can be
generated via sinabs-dynapcnn software with:

dynapcnn_network = DynapcnnNetwork(snn=snn, discretize=True, dvs_input=True, input_shape=(1, 128, 12
8))

samna_cfg = dynapcnn_network. make_ config(device="speck2fmodule")

Note: The device name str can be different depends on the devkit. The example shows the speck2f dev-kit

with module packaging

Once this configuration object is generated, it contains the network architecture profile
and parameters from the snn. The configuration also contains all the chip settings that
allows user to manually define their implementation. The main structure of this
configuration file is shown as follow:

samna_config
-cnn_layers # stands for DYNAPCNN layers

-0
-biases
-destinations
-dimensions
-input_congestion_banlancer_enable
-leak_enable
-leak_internal_slock clk enable
-monitor_enable
-neurons_initial_value
-output_decimator_enable
-output_decimator_interval
-return_to_zero
-threshold_high
-threshold_low
-weights

-1

www.synsense.ai 17 support@synsense.ai

https://www.synsense.ai

Syn Sense Make Intelligence Smarter

..upto 8

-dvs_filter # exsist in event-preprocessing layer
-enable
-filter_size
-hot_pixel_filter_enable
-internal_slow_clk
-low_pass_mode_enable
-threshold

-dvs_layer # exsist in event-preprocessing layer
-cut
-destination
-merge
-mirror
-mirror_diagonal
-monitor_enable
-off_channel
-on_channel
-origin
-pass_sensor_events
-pooling
-raw_monitor_enable

-readout
-enable
-internal_slow_clk
-low_pass_filter32_not16
-low_pass_filter_disable
-monitor_enable
-output_mode_sel
-output_neuron_num
-override_threshold_max
-readout_configuration_sel
-readout_ pin_monitor_enable
-threshold

4.2.3 Event Pre-processing Layer

The general event pre-processing pipeline is shown as Figure 6, the function block on
the board is executed exact in this sequence order.

sensor events A on/off/ . | . ROI (cut header append Event
™ monitor sensor merge/both pooling + mirror) + monitoring filter ’
support@synsense.ai 18 www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

Figure 7 . Computation Pipeline of Event Pre-processing Layer

For the hands-on tutorial of how to use the layer, please refer to section 5.5.

4.2.3.1. On/Off/Both/Merge Switching

The events generated by DVS is featured with two polarity on/off, which indicates the
actual light intensity change from low-high and high-low respectively. The two channel
can be configured flexibly as:

Merge two polarities as one channel(Sum):

samna_config.dvs_layer.merge = True

Keep only one channel:

keep only on channel
samna_config.dvs_layer.off_channel = False

samna_config.dvs_layer.on_channel = True

keep only off channel
samna_config.dvs_layer.off_channel = True

samna_config.dvs_layer.on_channel = False

4.2.3.2. Pooling

The pooling in event pre-processing layer is simply implemented by mapping
mechanism between source neurons and target neuron. This is done by integrating the
events from Region of Interest(ROI) to destination. In pre-processing layer, pooling

supports the kernel size of [1, 2, 4] for both X and Y axis, the stride is default to set the
same with the kernel size.

Example of configure a 2x2 stride of 2 pooling on pre-processing layer:

samna_config.dvs_layer.pooling.x = 2

samna_config.dvs_layer.pooling.y = 2

4.2.3.3. ROI selection

The ROI selection is designed for user to freely use the resolution of internal DVS. The
function can be used to select a rectangle region with defined top-left and bottom-right
corner coordinate. The result ROI will be automatically shift to top-left start from (0, 0). In
software, it is set the object origin stands for top-left corner and cut stands for

www.synsense.ai 19 support@synsense.ai

https://www.synsense.ai

Syn Sense Make Intelligence Smarter

bottom-right corner. An example as shown in Figure 7 for select the center input of

64x64 region is:

(0,0)

origin=(32,32)

64 ROI

cut=(96,96)

64

(127,127)

Figure 8 . Indication of ROI Selection Example

samna_config.dvs_layer.origin.x = 32
samna_config.dvs_layer.origin.y = 32
samna_config.dvs_layer.cut.x = 96

samna_config.dvs_layer.cut.y = 96

4.2.3.4. Mirror Operation

The mirror enables the user apply flip based on pixel coordinates. This including flip
horizontally(along y axis), vertically(along x axis) as well as swapping the axis between
x andy.

By using samna:

support@synsense.ai 20 www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

Horizontal Flipping

samna_config.dvs_layer.mirror.x = True

Vertical Flipping

samna_config.dvs_layer.mirror.y = True

Swap X and Y axis

samna_config.dvs_layer.mirror_diagonal = True

4.2.3.5. DVS Event Filter

The built-in filter supports 3 types of the filtering operation allows the user to flexibly
configure the denoising requirements based on DVS input.

These are:

® DVS Filter(shot noise filter)
® |ow Pass(flicker noise filter)
® Hot Pixel Filter + DVS filter

4.2.3.5.1. DVS Filter(Noise Filter)

The DVS filter block included in the pre-processing layer in order to filter the neighboring
sparse noisy activity. In general, an event at a position (x,y) is forwarded by the filter

when at least one pixel in the vicinity of (x,y) has spiked in a defined time window before
this event.

Whenever a pixel event arrives at the filter, the filter stores its timestamp and coordinate
in a memory space. Then when a new pixel event arrives, the filter checks the

pre-defined area in a number of clock-cycles. The actual timestamp are recorded using
a counter and each count is triggered by the slow-clock(3.2.6) source(for more
information please check the slow-clock section).

The filter can be configured in follow aspects:
To enable the filter:

samna_config.dvs_filter.enable = True

a. Filter Window Size

The window size defines the area of the neighboring in the spatial domain. The filter size
can go from 1x1 to 15x15.

www.synsense.ai 21 support@synsense.ai

https://www.synsense.ai

Syn Sense Make Intelligence Smarter

setting a 3x3 filter that checking its surroundings
samna_config.dvs_filter.filter_size.x = 3

samna_config.dvs_filter.filter_size.y = 3
b. Filter Delta/Threshold
The Delta threshold of filter is used to compare the current counter value with the value
of pixels neighboring the current activated pixel. If any of the neighboring pixels has a
value difference less than the Delta value, the filter will let current spike pass through,
other wise the current event is blocked.

setting the Delta threshold to 2
samna_config.dvs_filter.enable = True
samna_config.dvs_filter.threshold = 2

4.2.3.5.2. Low Pass(Flicker Filter)

In this mode, the filter works as a low-pass filter. This mode can be potentially used to
filter out 50/60Hz light flicking noise produced by some lights such as fluorescent or
LEDs.

Low-pass filter is used to filter the events which the time interval below a certain
threshold, solving the flickering problems. If there is another event in a certain period
(which depends on slow clock rate and threshold), the event would be regarded as
noise and be filtered. The usage of this filter is also highly depends on the setting of
slow-clk. e.g. slow-clock rate is 1000Hz(1ms) and threshold is 25, so the period is 1x25
=25 ms, which means if the time interval of two events in same pixel is lower than 25 ms,
the event would be filtered. So in flickering environment, those high-frequency flickering
noise would be filter after enabling low-pass filter mode.

To enable the filter:

samna_config.dvs_filter.enable = True
samna_config.dvs_filter.hot_pixel_filter_enable = False

samna_config.dvs_filter.low_pass_mode_enable = True

Then the filter size should be set to 0 and set the threshold
samna_config.dvs_filter.filter_size.x=0

samna_config.dvs_filter.filter_size.y=0
samna_config.dvs_filter.threshold = 25

support@synsense.ai 22 www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

4.2.3.5.3. DVS filter + Hot Pixel Filter

The hot pixel filter is used to filter the expected high frequency signal that typically

caused by the manufacture mismatch of DVS circuitry. The hot pixel usually is fixed to a
location and has a firing rate of 50-1000Hz. The threshold is also highly depends on the
setting of external slow-clk(section 3.2.6).

To use the Hot Pixel Filter

samna_config.dvs_filter.enable = True
samna.config.dvs_filter.hot_pixel_filter_enable = True

samna.config.dvs_filter.threshold = 5 # setting up the threshold

4.2.3.5.4. Explanation of filter mode conflicts and slow-clock

Due the restriction of hardware resources, The filter mentioned in 3.2.4.5.1-3 can not be
fully implemented at the same time. The user should only configure the filter operation in
one of the mode:

® |ow Pass Mode
® DVS Filter model
® DVS Filter + Hot Pixel Filter Mode

Since the filter performance is highly depended on the timing reference, the setting of
the external/internal slow-clock is crucial for the correct usage of these filtering

techniques. The development kit with samna provides an efficient way for user to set up
the slow clock, for further information, please check section 3.2.6.

4.2.3.6. Fan-out

The event pre-processing layer can maximally have fan out of two. This stands that the
output event from the layer can be copied and forward to 2 different destination. By

default, the fan-out of pre-processing layer is set to be fed into the first layer of designed
neural network.

To set multiple destination of the layer:
setting the output to DYNAPCNN core 4

samna_config.dvs_layer.destinations[0] = 4

www.synsense.ai 23 support@synsense.ai

https://www.synsense.ai

Syn Sense Make Intelligence Smarter

setting a copy of output to DYNAPCNN core 5

samna_config.dvs_layer.destinations[0] = 5

4.2.3.7. Monitoring

The monitor in event pre-processing layer enables the user to receive all the events that
arrives here. When enabled, output messages of the DVS pre-processing block are

forwarded on the monitor bus to the output serial interface. This is typically opened
when user tends to output DVS events. To use it, simply turns the monitor on by:

samna_config.dvs_layer.monitor_enable = True

4.2.3.8. Disable the Event Pre-processing Layer

If disabled, the internal sensor events are dropped, i.e., not forwarded to the DVS

pre-processing block. This is typically used when sensor data is provided by an external
source (Ext DVS Mode) or feeding customized data from host machine.

Disable the event from internal dvs and event-preprocessing layer

samna_config.dvs_layer.pass_sensor_event = False

support@synsense.ai 24 www.synsense.ai

https://www.synsense.ai

Make |ntelligence Smarter SynSense

4.2.4 DYNAPCNN Layers

The main computational resources of Speck™ are 9 configurable SCNN layers called

DYNAPCNN layers or cores. As is shown in Figure 8, each of these layers can
implement a sequence computation that equivalent to [convolution->spiking
neuron->pooling] structure. (Note all the term “layer” in the doc refer to a single
DYNAPCNN layer/core). Individual core can be connected to form a user defined
network of any size up to the maximum available resources. Layer memory sizes are
balanced to provide a flexible balance of resources, with larger or smaller layers. The
data flow between core and core are purely based on Address Event

Representation(AER) protocol, where only event signals are used in communication
between layers.

[other layeriDVs/ Data Flow Beween DYNAP™CNN Layers

H event

o 7

Async —> Spiking — Optional

Convolution Neuron Pooling

l

Async — Spiking — Optional

Convolution Neuron Pooling

event

event

vV

Other
layer/Readout/Interface

Figure 9 . DYNAP™CNN layer Data Flow Pipeline

www.synsense.ai 25 support@synsense.ai

https://www.synsense.ai

Synsense Make Intelligence Smarter

4.2.4.1. Memory Capacity and Resolution of DYNAPCNN Layers

The Speck™ is divided into 9 cores, each of which executes a single DYNAPCNN™
layer(core). The memory capacities of the cores are different, and restrict the
implementation of larger layers to specific cores.

Table 1: DYNAP™CNN Memory Distribution

Kernel memory Leak memory Neuron memory
(WORD) (WORD) (WORD)

2 16 Ki 1 Ki 64 Ki
""""" T
.......... 432KI1K|32KI
.......... 564KI1K|16KI
.......... 664KI1K|16KI
.......... 716K|1KI16K|
""""" T

Table 2: DVS Event Filter Block Memory Capacity

SRAM Filter memory (WORD)

DVS Event Filter 16 Ki

support@synsense.ai 26 www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

Table 3: Available Parameter Resolution

Memory Type Word Length

1 Kernel 8 bits
SUURTR 2 Neuron .. 16blts
F—— 3 ... Leak .. 16blts
SR 4 F"ter 16blts

Let a network be defined by the number of input features ¢, the number of output
features f, and the kernel dimensions kx and ky. The theoretical number of WORDs
required for kernel memory Kw is then

Km = cf kx ky
The total number of memory WORDs required is

KMT= c2 logz (kxky), + llogz (1)7

The required number of neuron memory WORDs NM depends on the dimensions of the

input features cx and cy, as well as the stride and padding sx, sy, and px, py.

c,—k, +2p,

f = + 1
SX
c.—k +2p
e
y
NM=ffxfy

Again the total number of required WORDs on the chip side is larger.

Nyt = f-2 [logz (7) / + [logz () /

www.synsense.ai 27 support@synsense.ai

https://www.synsense.ai

Syn Sense Make Intelligence Smarter

Taking an example of convolutional layer

conv_layer = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=(3,3), stride=(1,1), padding=(1,1))

Assuming the input dimension of 64x64, the output feature map size can be obtained
as:

o _64-3+2x%]

] 1 = 64
64 —3+2%1
, = 1 = 64

The actual kernel memory entries is calculated thus:
kmr = 16* 32*% 4% 4 = 8ki

The actual neuron memory entries is then:

NMmT = 64* 64* 32 = [28ki

Where 128Ki neuron exceeds any available neuron memory constrains among 9 layers,
thus this layer **CANNOT** be deployed on the chip.

In addition to the neuron memory and kernel memory constraints, the hardware design
limits few of dimensions in terms of convolutional layer settings as listed out in section
2.2

® For output channel number/feature number of the convolutional layer, maximally

can be setto 1024.
up to 1024

conv_layer = nn.Conv2d(in_channels=16, out_channels=1024, kernel_size=(3,3), stride=(1,1), padding=(1,1))

® For convolutional kernel size, maximally can be set to 16x16

up to 16x16

conv_layer = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=(16,16), stride=(1,1), padding=(1,1))

® For convolutional kernel stride, the available choice are {1,2,4,8}

up to 8x8

conv_layer = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=(16,16), stride=(1,1), padding=(1,1))

support@synsense.ai 28 www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

® For padding size, available choice are {0,1,2...7}

up to 7x7

conv_layer = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=(16,16), stride=(1,1), padding=(1,1))

® For pooling kernel size, available choice are {1x1, 2x2, 4x4}

up to 4x4

conv_layer = nn.AvgPool2d(kernel_size=(4,4))

® For output feature map size after convolution, maximally accepts 64x64.

4.2.4.2. Congestion Balancer in DYNAPCNN Layers

In Speck™, DYNAPCNN layer has a congestion balancer block at its data path input.
This is designed for reducing event bandwidth as user needed.

The congestion balancer enables dropping of input spikes at any time when the

convolutional core of the layer is busy processing previous event. Specifically, if a train
of spikes are sent to the layer, a number of them will be accepted (via some buffering)
and the convolution computation starts. If, for example, the kernel is very large and a
new spike arrives while the layer input is busy, this new spike will be dropped. As soon
as the layer is again available, a coming spike will be processed.

This block is then able to adapt the spike input frequency to the convolution by capping
it to the maximum that the layer can process. When disabled, the block will let all spikes
through. This feature is controlled by the input_congestion _balancer_enable.

Example:

Open congestion balancer for DYNAPCNN layer 0 and layer 1
samna_config.cnn_layers[0].input_congestion_balancer_enable = True

samna_config.cnn_layers[1].input_congestion_balancer_enable = True

4.2.4.3. Spike Decimator

For each DYNAPCNN layer, it is equipped with a decimator block at its data path

output. The decimator block enables the user to reduce the spike rate at the output of a
convolutional layer. When disabled, the block will let all spikes through as normal.

This feature is controlled by the output decimator enable with configurable choice from
2 to 512.

www.synsense.ai 29 support@synsense.ai

https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html#samna.speck2f.configuration.CnnLayerConfig.input_congestion_balancer_enable
https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html#samna.speck2f.configuration.CnnLayerConfig.output_decimator_enable
https://www.synsense.ai

SynSense Make Intelligence Smarter

Table 4: Spike Decimator Settings

Decimator_interval Description

0 1 spike passed every 2
....................................... 11Splkepassedevery4
L 21Splkepassedevery8
....................................... 31Splkepassedevery16
4 ... 1Splkepassedevery32
....................................... 51Splkepassedevery128
....................................... 61Splkepassedevery256
....................................... 71Splkepassedevery512

Example:

enable the decimator for DYNAPCNN core 3 and set 50% drop of its output events
samna_ config.cnn_layers[3].output_decimator_enable = True

samna_ config.cnn_layers[3].output_decimator_interval = 0

4.2.4.4. Convolution and Spiking Neuron Operation

In each DYNAPTCNN layer, whenever a spike arrives, it follows a async convolution,
spiking neuron activation and pooling operation. As is shown in Figure 9, Speck™ is
highly optimized with event-driven processing, the event-driven convolution does not
operate on a frame basis but only happens when an event arrives at the convolution
pipeline. When a spike with address information reaches an SNN core, the kernel value
and destination neuron position are obtained by searching the address. Then, the
neuron states are updated asynchronously based on the synaptic operation.
Asynchronous convolution is not affected by the arrival of other input events or cores, so
it can be efficiently distributed in parallel for multiple events at different spatial positions.
If pooling is applied to the pipeline, it happens after the spiking neuron activation and

implement the same as described in 3.2.3.2 which maps the destination to a same
neuron.

support@synsense.ai 30 www.synsense.ai

https://www.synsense.ai

Make |ntelligence Smarter SynSense

For each channel in a layer, it shares a single 16bit int value for biases/leak(check

section 3.2.4.7 for further detail). For each layer, it shares a single 16bit int value for

threshold_high and threshold low for all neurons. For more restrictions of convolutional
layer and spiking layer setting, check section 2.4 and section 3.2.4.1.

Input Event
AER(c, x,y,t0)

b4)

Upcoming Even& x,y,t1)

(c,x,y,t2)
(c,x,y,t3)

Input Address Kernel Address Convolution kernel Neuron Memory

Figure 1 0 . Explanation of Asynchronous Convolution and Spiking Activation Operations

4.2.4.5. Network Embedding

Typically, with a pre-defined sequential SCNN network structure, it is suggested to

implement the conversion via the built-in API from sinabs-dynapcnn package. The
connectivity, parameter quantization and bitstream configuration can be automatically
translated to samna configuration.

An example of converting the network from pytorch model:

network = nn.sequential([
nn.conv2d(),
IAFsqueeze(),
nn.pool(),
up to here is using 1 dynapcnn layer
nn.conv2d(),
IAFsqueeze(),
nn.Flatten(),
nn.Linear(),
IAFsqueeze(),

up to here is using 2 dynapcnn layer

www.synsense.ai 31 support@synsense.ai

https://www.synsense.ai

Syn Sense Make Intelligence Smarter

)
dynapcnn_network = DynapcnnNetwork(snn=network, discretize=True, dvs_input=True, input_shape=(1, 128,
128))

samna_cfg = dynapcnn_netowrk. make_ config(device="speck2fmodule")

However, user can still freely modify the network architecture by representation in the
samna configuration:

For a instance, checking the parameter of core 0

samna_config.cnn_layers[0].biases # bias parameter
samna_config.cnn_layers[0].weights # weight parameter
samna_config.cnn_layers[0].destinations # connectivities

4.2.4.6. Neuron Dynamics

For each DYNAPT™CNN layer, neuron can be set in several aspects to achieve different
neuron dynamics

4.2.4.6.1. Neuron Initial State

By the default, the neuron initial membrane potential can be automatically translated

into the configuration if the network configuration is converted from sinabs-dynapcnn.
However, users are still able to manually define any neurons’ initial membrane potential
by setting values to object:

For a instance, checking the parameter of core 0

samna_config.cnn_layers[0].neurons_initial_value # bias parameter

4.2.4.6.2. Membrane Reset Mechanism

For neuron reset mechanism, it refers to the operation for the neuron state/membrane
potential when it emit a spike. Speck™ supports two ways of resting: hard reset and hot
reset. This is controlled by return to zero.

The hard reset will reset the neuron membrane potential to 0 when there is a spike fires
out:

For a instance, setting the neurons of core 0

samna_config.cnn_layers[0].return_to_zero = True

The soft reset will instead subtract the membrane potential by 1 x pre-defined neuron

support@synsense.ai 32 www.synsense.ai

https://www.synsense.ai

Make |ntelligence Smarter SynSense

firing threshold.

For a instance, setting the neurons of core 0

samna_config.cnn_layers[0].return_to_zero = False

Note: Due to the asynchronous feature of neuron operation, the spiking neuron
calculation is only triggered by once when a incoming spike arrives. This means if the
membrane potential exceeds 2 x pre-defined threshold, the neuron will still fire only
once. When soft reset applied, the neuron will still have more than 1 x threshold

membrane potential left and neuron will remain silent until next input spike arrives.

4.2.4.6.3. Upper/Lower Firing Threshold

For hardware implementation of neurons, it is essential to limit the neuron membrane
potential upper/lower limits since the memory cannot go infinity. The upper threshold
acts the same role as the firing threshold where neuron will emit a spike when it exceeds
the threshold. The lower threshold constraints the minimum membrane potential during
the computation. When a negative activation applied, if membrane potential already
stands at threshold_low, the membrane potential will not change. These are controlled
by threshold high and threshold low respectively. These two parameter can also be
defined in Sinabs.

To directly modify thresholds through samna configuration:

For a instance, setting threshold for core 0
samna_config.cnn_layers[0].threshold_low = -100

samna_config.cnn_layers[0].threshold_high = 100

Important Notice: There is a known BUG in current generation of Speck™ that

threshold_low cannot be set equal to 0, Please alternatively choose a nearest value
instead e.g. threshold_low = -1.

4.2.4.7. Leak/Bias Operation

The leak operation of neuron is designed independent of the asynchronous neuron
calculations and it is only driven by a reference clock signal(slow-clock). For each
DYNAP™CNN layer, it includes a leak generation block which will update all neuron
values in a layer with provided leak values.

If use the bias operation, a calculated slow clk and bias value should be provided where
in the Samna Configuration:

www.synsense.ai 33 support@synsense.ai

https://www.synsense.ai33support@synsense.ai
https://www.synsense.ai33support@synsense.ai
https://www.synsense.ai33support@synsense.ai

Syn Sense Make Intelligence Smarter

For a instance, setting leak/bias for core 0

samna_config.cnn_layers[0].leak_enable = True

using the internal DVS count based clock

samna_config.cnn_layers[0].leak_internal_slow_clk_enable = True

using external clock

samna_config.cnn_layers[0].leak_internal_slow_clk_enable = False

Set biases

samna_config.cnn_layers[0].biases = [-127] # assuming only one channel

4.2.4.8. Fan-out

For each DYNAP™CNN layer, same as described for event pre-processing layer in

section 3.2.3.6, it supports up to maximally 2 output destinations. This can be controlled
by destinations.

For instance setting output destination from core 0 to core 1 and core 2
samna_config.cnn_layers[0].destinations[0] = 1

samna_config.cnn_layers[0].destinations[1] = 2

This potentially increase the flexibility of network structure where user can configure
different architecture as is shown in Figure 10.

Sequential Branched Residual Connections Skip Connections
\ s C \ y— CEEEE—

Conv D(:/nsv Conv Conv
1] = _\‘
——— ~ “ EE— e a

Conv Conv [Conv] Conv Conv [Conv]
) S— ~ 7 S — \ J
r—— . N\

Conv Conv [Conv] Conv Conv
\ vy \ 7 \ —— M—/

Figure 1 1 . Diagram of Available Network Structure

4.2.4.9. Monitoring

Same as described in 3.2.3.7, the output event signal from each DYNAP™CNN layer
can be monitored via the asynchronous interface together with host machine software
samna. To enable the monitor of a single DYNAPT™CNN layer:

support@synsense.ai 34 www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

For instance setting monitor enable for core 0

samna_config.cnn_layers[0].monitor_enable = True

4.2.5 Readout Layer (Post Processing)

Hint: If user do not intend to build a hardware system that directly make use the
interrupt signal with Speck™ it is not suggested to use the readout layer for on-chip
post-processing. For a hands on tutorial for readout layer usage please check section
5.8.

The main use of the post-processing block is to calculate the moving average over a
time window for a maximum of 15 neurons, provide the maximum average of the 15

neurons and compare the value of the calculated moving averages against a specified
threshold. 5 pins of Speck™ are dedicated to the direct readout of the class of maximum
activity, these pins (INTERRUPT and READOUT1 to 4) (check block diagram in section
2.1) are designed to provide a direct readout of the maximum spiking class (with or

without activity threshold). The readout pins are typically used when communication with
an external computation platform such as MCU/FPGA etc.
4.2.5.1. INTERRUPT Pins

This pin outputs 0 until the class of max activity exceeds the threshold. Alternatively, the
threshold comparison can be overridden by setting override threshold max to True. In
this case, INTERRUPT becomes 1 at every falling edge of the slow-clk.

The INTERRUPT pin is raised at the falling edge of the slow-clk only if

override threshold _max is True or the max class activity is again above the selected
threshold.

4.2.5.2. Readout Pins

There are 4 readout pins. READOUTX pins reflect the index of the class of max activity
as described in Data Output Modes. These pins are activated in two cases:

.A class has spiked more than the set threshold during the previous readout clock
period (INTERRUPT is also raised when this condition is met).

.The override threshold _max is set to True (override threshold).

www.synsense.ai 35 support@synsense.ai

https://synsense-sys-int.gitlab.io/samna/0.48.0/reference/speck2f/configuration/index.html
https://synsense-sys-int.gitlab.io/samna/0.48.0/reference/speck2f/configuration/index.html
https://synsense-sys-int.gitlab.io/samna/0.48.0/reference/speck2f/configuration/index.html
https://synsense-sys-int.gitlab.io/samna/0.48.0/reference/speck2f/configuration/index.html#samna.speck2f.configuration.ReadoutConfig.override_threshold_max
https://www.synsense.ai

SynSense Make Intelligence Smarter

The 4 bits reflect the binary value of the most recent spiking class. As such, in an

application requiring only 4 classes, the CNN can be configured such that the four
output classes are encoded as class 1, 2, 4 and 8 when arriving at the readout layer. In

this condition, the 4 output pins READOUTX will each directly reflect one of the classes
of interest, and no decoder will be needed to interpret the chip output.

4.2.5.3. Readout Pin Monitoring

The readout layer in Speck™ is the post-processing layer, the output results are
readable through the 4 readout pins if an interrupt happens if configured correctly.

The readout pin monitoring feature can be enabled via samna. To enable the readout
layer, the samna.speck2f.configuration.ReadoutConfig.enable needs to be set to True
first. To forward your model’s last layer to the readout layer, you need to set its
destination to 12.

The samna.speck2f.configuration.ReadoutConfig.readout_configuration_sel needs to
be set according to your model. There are 4 different addressing modes that could be

selected:
Table 5: Readout Pin Mode Settings

Value Mode

0 - 2x2yf
1 __ 2X4y2f __
_____ 24X4y1f
..... 31X1y16f

And set the samna.speck2f.configuration.ReadoutConfig.threshold of the readout layer

according to your model. The moving average of the output neurons is compared to the
threshold value to produce an output if the received number of spikes is greater than the
threshold.

The Speck™ readout layer also provides a low pass filter. There are two selectable time
windows, 16 (16 * slow clk period) and 32 (32 * slow clock period), which can be chosen

support@synsense.ai 36 www.synsense.ai

https://synsense-sys-int.gitlab.io/samna/0.48.0/reference/speck2f/configuration/index.html
https://synsense-sys-int.gitlab.io/samna/reference/speck2f/configuration/index.html
https://synsense-sys-int.gitlab.io/samna/0.48.0/reference/speck2f/configuration/index.html#samna.speck2f.configuration.ReadoutConfig.threshold
https://www.synsense.ai

Make Intelligence Smarter SynSense

by samna.speck2f.configuration.ReadoutConfig.low_pass_filter32_not16.

The default value is False, which is 16 * slow clock period. The low pass filter is enabled
by default, if you don’t want to use it, please set:

samna.speck2f.configuration.Readout-Config.low pass_filter_disable to True.

Then we set samna.speck2f.configuration.ReadoutConfig.readout_pin_monitor_enable
to True in order to monitor the 4 readout pins.

If there is a valid result, an interrupt is generated by the chip and a

samna.speck2f.event.ReadoutPinValue event is sent to Samna.

The samna.speck2f.event.ReadoutPinValue contains 2 members, an index, indicating
the feature, and a timestamp in microsecond, indicating when this event happened.

4.2.5.4. Readout Time Window

The time window where the moving average is calculated is configurable according to
the clock provided by external slow-clock, and can have time window of 1, 16 and 32
times the provided clock rate. The output data from the readout block can be extracted
by using different configuration modes. Moreover, some timing characteristics of the
block and the addressing mode of the neurons are configured.

4.2.5.5. Data Output Modes

The ReadoutValue is generated at every slow-clock cycle, it has an attribute named
“value” which is a 21 bits data, as is shown in Table 6, it could have different meaning

Table 6: Readout Mode Selection Settings

output_mode_sel bit[20] bit[19:16] bit[15:0]

0 data valid neuron index of max power down (clock gating)
................... 1data Va"dneuronmdex of maXthreShOIdcompare OUtPUt
- > cata valld | neuron index of max | average oulput of the selected newron’
3data Va"dneuronmdexofmaxaverageOUtPUtofmaxsplkmgneuron
www.synsense.ai 37 support@synsense.ai

®

https://synsense-sys-int.gitlab.io/samna/0.48.0/reference/speck2f/configuration/index.html#samna.speck2f.configuration.ReadoutConfig.low_pass_filter32_not16
https://synsense-sys-int.gitlab.io/samna/0.48.0/reference/speck2f/configuration/index.html#samna.speck2f.configuration.ReadoutConfig.low_pass_filter_disable
https://synsense-sys-int.gitlab.io/samna/0.48.0/reference/speck2f/configuration/index.html#samna.speck2f.configuration.ReadoutConfig.readout_pin_monitor_enable
https://synsense-sys-int.gitlab.io/samna/0.48.0/reference/speck2f/event/index.html#samna.speck2f.event.ReadoutPinValue
https://synsense-sys-int.gitlab.io/samna/0.48.0/reference/speck2f/event/index.html#samna.speck2f.event.ReadoutPinValue
https://www.synsense.ai

Syn Sense Make Intelligence Smarter

if output_mode_sel is set to 0, the data_out is equal to 0.

if output_mode_sel is set to 1, data_out[15:0] consists of the data of the threshold
comparison, the index of the maximum moving average neuron and the data valid
signal. The threshold comparison data is the 16 bit value of the comparison of each
neurons moving average with the threshold.

® if output_mode selis set to 2, data_out[15:0] consists of the moving average of the
selected neuron, the index of the maximum moving average and the data valid

signal. The data valid signal is asserted after all the computations have finished in
order to ensure correct sampling of the data.

® if output mode_ selis set to 3, data_out[15:0] consists of the maximum average of
the 16 neurons, the index of the maximum moving average neuron and the

comparison output between the maximum moving average and the threshold.

4.2.6 Slow Clock

The slow-clock is internally used/externally provided to Speck™ to operate a number of
features.

4.2.6.1. Clock Speed

In a typical application, the slow-clock toggles at a speed of around 10Hz to 10kHz, the
frequency depends on the internal use of the clock and on the specific application.

4.2.6.2. Usage

The slow-clock unifies three timing sources used by different functional blocks

® Leak/Bias Clock (section 3.2.4.7): Each DYNAP™CNN layer including a leak
circuitry receive the slow-clk to trigger a leak operation at every clock cycle.

® DVS Filter Block (section 3.2.3.5): The DVS event filters use the slow-clock to
provide the timing reference and update the internal states.

® Readout Block (section 3.2.5): The readout layer uses the slow-clock as the timing
reference for moving-average clock to time the calculation of output class moving
averages.

Important Notice: The three function block are sharing the same slow-clock source.

support@synsense.ai 38 www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

4.2.6.3. Generation

The slow-clock can be provided upon the development-kit in two ways

4.2.6.3.1. Generate by dividing the internal DVS raw event rate

The internally generated clock exploits the random continuous generation of internal

DVS events (The actual generation frequency is fluctuate with the scene). In other word,
each clock cycle is generated based on the number of DVS event.

The available counting range is [214, 217], the actual infernal _slow _clk_divider available
range is [14, 17]
To set this value:

using internal slow-clk and set the clock counter to 2" DVS events.
samna_config.factory_config.internal_slow_clk_divider = 17

4.2.6.3.2. Provide by external clock source

On Speck™ development kit, A FPGA is used to provide a stable, programmable
slow-clk signal to Speck™. This external clock source is fully independent to the
operating of the chip and can be configured via samna.

get the development kit object

devkit = samna.device.open_device("Speck2fModuleDevKit")

get the io module

devkit_io = devkit.get_io_module()

enable the slow-clock

devkit_io.set_slow_clock(True)

set the slow-clock frequency to 1000Hz

devkit_io.set_slow_clk_rate(1000)

www.synsense.ai 39 support@synsense.ai

https://www.synsense.ai

SynSense Make Intelligence Smarter

4.2.6.4. On Board Power Monitoring

The Speck™ development kit has the built-in on board power monitor for five power
traces of the chip. These are listed out as Table 7:

Table 7: Power Trace of Speck™

Power Trace Channel Description
VDD_IO 0 Power of |0 interface
VDD_RAM1 PowerofRAMr/W
................ VDD_LOG|CZPoweroﬂog.coperat.on
. VDD_PIXELDIGITAL : 3 | DVS pixel power from digital circuits

For a simple start up power measurement:

import samna

import time

d = samna.device.get_unopened_devices()

dk = samna.device.open_device(d[0])

power = dk.get_power_monitor()

oo O B~ R N B

buf = samna.BasicSinkNode_unifirm_ modules_events_monitor()
9. graph = samna.graph.EventFilterGraph()

10. graph.sequential([power.get_source_node(), buf])

1.

12. print("Manual power monitor test:”)

13. power.single_shot_power_monitor()

14 . time.sleep(1)

15. ps = buf.get_events()

16. [print(p) for p in ps]

17 . time.sleep(2)

18.

19. print("Auto power monitor test:”)

20. # set freq to 1 Hz. The maximum power monitor rate is 100 Hz
21. power.start_auto_power_monitor(1.0)

22. time.sleep(5)

23. power.stop_auto_power_monitor()

24. ps = buf.get_events()

25. [print(p) for p in ps]

Note: The on board power monitor has about + 50uW offset on each power trace. Max
sampling rate 100Hz.

support@synsense.ai 40 www.synsense.ai

https://www.synsense.ai

Make |ntelligence Smarter SynSense

4.3. Connecting External DVS Resource

DYNAP-CNN devkit

DYNAP-CNN
Neuromorphic
Processor

SPECK devkit

Internal DVS ‘

DYNAP-CNN External DVS
Neuromorphic

Processor @ (6,

Figure 1 2 . Diagram lllustration of Connecting External DVS

As is shown in Figure 11, Itis possible to connect an external DVS camera to the board
via host machine, more info can be found at

Send events from a DVS to a dev kit using a graph.

www.synsense.ai 41 support@synsense.ai

https://synsense-sys-int.gitlab.io/samna/0.48.0/devkits/speckSeries/examples/display_speck2f_dvs.html
https://www.synsense.ai

Syn Sense Make Intelligence Smarter

5. Software Tool Chain

SynSense provides Sinabs and Samna to help development on the Speck™
Development Kit.

5.1. Sinabs

Sinabs is a Python library for development and implementation of Spiking Convolutional
Neural Networks (SCNNs). The library implements several layers that are spiking
equivalents of CNN layers. In addition it provides support to import CNN models
implemented in torch conveniently to test their spiking equivalent implementation.

An SNN model developed in Sinabs can be easily deployed onto the Speck™
development kit with the host machine software Samna.

Sinabs-dynapcnn is the Plug-in site-package based on Sinabs that support user can
create hardware compatible neural networks for Speck™ and DYNAPT™CNN chip series.
It wraps a number of samna configuration APIs and helps user can do the chip network
deployment with few lines of code.

5.2. Samna

Samna is the developer interface to the SynSense tool chain and run-time environment
for interacting with all SynSense devices. Developed towards efficiency and user

friendly, a set of Python APl is available with the core running in C++, it is possible to
work with neuromorphic devices in a professional and elegant manner. Samna also

support@synsense.ai 42 www.synsense.ai

https://sinabs.ai/
https://synsense-sys-int.gitlab.io/samna/
https://www.synsense.ai

Make Intelligence Smarter SynSense

features an event based stream filter system allows real-time, multi-branch processing

of the event based stream coming in or out from the device. With an integration of a

just-in-time compiler in Samna, the flexibility of this filter system has been taken to an
even higher dimension, which supports adding users defined filter functions at run-time
to meet requirements of any different scenarios.

For more examples please refer to Samna Official Documentation.

To efficiently use the Speck™ Development Kit, it is essential to use the samna graph to
build a route that can communicate with dev-kit. The following links provide few instance
that assist the user to start with:

Device Controller:

https://synsense.qgitlab.io/sinabs-dynapcnn/fags/device management.html
Visualization of the DVS:

https://synsense-sys-int.gitlab.io/samna/devkits/speckSeries/examples/display speck2f
dvs.html
Measurement of Power :

https://synsense.qgitlab.io/sinabs-dynapcnn/getting started/notebooks/power monitorin

g.html
Speck Event API List :

https://synsense-sys-int.gitlab.io/samna/reference/speck2f/event/index.htmlx

Speck Configuration API List :

https://synsense-sys-
int.gitlab.io/samna/0.48.0/reference/speck2f/configuration/index.html#samna.speck2f.co
nfiguration.SpeckConfiguration

www.synsense.ai 43 support@synsense.ai

https://synsense-sys-int.gitlab.io/samna/0.48.0/devkits/speckSeries/summary.html
https://synsense.gitlab.io/sinabs-dynapcnn/faqs/device_management.html
https://synsense-sys-int.gitlab.io/samna/0.48.0/devkits/speckSeries/examples/display_speck2f_dvs.html
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/power_monitorin
https://synsense.gitlab.io/sinabs-dynapcnn/getting_started/notebooks/power_monitoring.html
https://synsense-sys-int.gitlab.io/samna/0.48.0/reference/speck2f/event/index.html#samna-speck2f-event
 https://synsense-sys-int.gitlab.io/samna/0.48.0/reference/speck2f/configuration/index.html#samna.speck2f.configuration.SpeckConfiguration
https://www.synsense.ai

Syn Sense Make Intelligence Smarter

/—*ﬁ

Design network
| —
/—‘%\ (. .-,
: SwW Measure
° Train > Test
performance
sinrabs | J) [perome)
For simulation S —— EE—
Weights HW Test Measure
I and i . performance
ayers o)
y —
A
Produce HW cfg
cfg
———
Produce
Sa miia bitstream
N~—
Host management Bitstream
—————
Deploy
Bitstream

Speck™ Dev Kit Write to ROM/RAM

kTM

Figure 1 3. Software Tool Chain for Spec

support@synsense.ai 44 www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

5.4. DVS tools

DVS tool mainly focusing on provide the user ability to record and label the data using
Speck™ development kit. The tools is maintained at git repository:

https://qitlab.com/synsense/dvs tool

Note: Recorder and Labeling tool are two software that maintained in different branch,
please download the tools separately from branch instead of clone the entire repository.

5.4.1 DVS Recorder
With Python terminal:

pip install -r requirements.txt

python run.py

1. Start to record Click the Record menu and click record, then choose a device(if there
are many devices)

Ty -y -y T
(S W W W N

Timing(s 9

set path and filename

CountDown(s) 0
/ Record
/ choose

Directory: /home/syn/lyh/data

Filename lg-’—-;tuve_v‘)(q[

Figure 1 4 . Set path for DVS recorder
2. Set storage path and filename as is shown in Figure 13.

www.synsense.ai 45 support@synsense.ai

https://gitlab.com/synsense/dvs_tool
https://www.synsense.ai

SynSense Make Intelligence Smarter

3. Start and stop recording, with the adjustment of record timing and countdown as
shown in Figure 14.

A - A =
‘ UU - UU - UL . LU click start and stop 0000 id 523
® Timing(s) 10 - Timing(s
CountDown(s) 0 CountDown(s) \
v I ' —
choose choose

Directory: /home/syn/lyh/data
ey i Directory: /home/syn/lyh/data

Filename: |gesture_00]]
Filename: |gesture_001

Figure 1 5. DVS tool record and settings

5.4.2 DVS Labeling Tool
With Python terminal:

pip install -r requirements.txt

python run.py

1. Click the File menu then choose a data file (*bin), as shown in Figure 15.

Events Visualization and Labeling

size y
1--i8 bin File
98 binFile
2-+iB bin Fil
48 bin
0B bin
9-+iB bin
iB bin
i8 bin
5B bin L
3B bin
I8 bin
B bin
8 bin
3B bin
X cancel
current:
sat (0 |2 [o |2|end 0 |%|class insert

Figure 1 6 . DVS tool open bin file
2. Choose slicing method to set framing visualization performance(Figure 16).

support@synsense.ai 46 www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter SynSense

Events Visualization and Labeling - o @

Flle

delete

startTime endTime startidx endidx class

SliceByTime | 1000

o@D O

® SliceByConut 1000

home/syn/Downloads/cut/test_yalun_16.bin

1 2 2. choose SliceByTime or SliceByCount and
set time window or spike count

stat |1 32 o end S \class insert

Figure 1 7 . DVS tool slicing setting

3. Drag the progress bar or click the play button to visualize the data(Figure 17).

Events Visualization and Labeling - 0 @

delete
startTime endTime startidx endidx class
1 886038 4. 4 (
2 1126971 1402694 7 130999
3 162584 1937 1 18899 (
4 18593 7376 206000 239999
5 90 947 4
‘
SliceByTim: | 1000
® SliceByConu | 1000
home/syn/lvh/data/attentive.bin
1642 5890
@ . ~———— Chick play button or drag the progress bar to view data

start 1 o 5890 o end 2 class insert

Figure 1 8 . DVS tool visualization

4. Click insert to add info of segmentation(Figure 18) and double click label visualize the
labeled data(Figure 19).

www.synsense.ai 47 support@synsense.ai

https://www.synsense.ai

SynSense

Make Intelligence Smarter

Flle

Events Visualization and Labeling

- =] x

4. The timeStamp and the index of the segmentation events
will be recorded.

/home/syn/Downloads/cut/test_yalun_16.bin

17

—_—

start |4

nsert

N\

startTime

delete

endTime

1/81048¢ 1149556

SliceByTime | 1000

o SliceByConut | 10x

]

Figure 1 9 . DVS tool add label

Clipvisualization

support@synsense.ai

% d Labeling

startidx

3000 16999

endidx class

Double click the segmentation to view it

delete
endTime startidx endidx
886038 42000
1402694 9700¢

12584 152
185¢ X
58908

SliceByTim+ 1000

SliceByConu 1000

Figure 2 0 . DVS tool visualize the labeled data

48

class

www.synsense.ai

https://www.synsense.ai

Make Intelligence Smarter

SynSense

6. Technical Support

For a more detailed explanation of the reading principle and method for the Speck™

chip output, as well as instructions for configuring and utilizing the on-chip CNN and

other resources, please visit SynSense's publicly available materials on:

GITHUB:

https://github.com/synsense

Sinabs Documentation:
https://sinabs.ai/

Git Repository:
https://github.com/synsense/sinabs

Sinabs-dynapcnn Documentation:
https://synsense.qgitlab.io/sinabs-dynapcnn/

Samna Documentation:

https://synsense-sys-int.gitlab.io/samna/

For further inquiries please visit:

https://www.synsense.ai/contact/

www.synsense.ai 49

support@synsense.ai

https://github.com/synsenseTonicDocumentation:
https://sinabs.ai/
https://github.com/synsense/sinabs
https://synsense.gitlab.io/sinabs-dynapcnn/
https://synsense-sys-int.gitlab.io/samna/
https://www.synsense.ai/contact/
https://www.synsense.ai

Synsense Make Intelligence Smarter
7. Change log

No. Version Date Editor Changes
1 Vo1 202304 S ~ Initial Version
> V10 202308 = AL ™ Version
3 Vi 202441 Dylan Added getting started part
4 V12 202512 @ JZ ~ Updated links
support@synsense.ai 50 www.synsense.ai

https://www.synsense.ai

Make Intelligence smarter

© synSense — All rights reserved

